Hero image

Spark Science

Average Rating4.56
(based on 18 reviews)

Spark Science provides high quality science educational resources for secondary school teachers. From dual-coding, literacy and reading tasks, dyslexic friendly backgrounds, and continual Assessment for Learning (AfL) tasks embedded into all our lessons, Spark lessons will increase engagement, participation and understanding for your students.

80Uploads

33k+Views

29k+Downloads

Spark Science provides high quality science educational resources for secondary school teachers. From dual-coding, literacy and reading tasks, dyslexic friendly backgrounds, and continual Assessment for Learning (AfL) tasks embedded into all our lessons, Spark lessons will increase engagement, participation and understanding for your students.
Exothermic and Endothermic Reactions
emily_k_brown1994emily_k_brown1994

Exothermic and Endothermic Reactions

(0)
A comprehensive, engaging, challenging and interactive lesson package designed with AEN students and non-science/non-chemistry specialist teachers in mind! This lesson contains: Lesson powerpoint - including teacher notes and answers in “notes” section Student led lesson worksheet Teacher answer sheet Risk assessment for class practicals Printable practical instruction cards Risk assessments for teacher demonstrations Lesson resources contain: In-built challenge tasks throughout In-built scaffolded learning for lower abilities Various activites to assess progress and understanding that you can tailor to fit any class or available resources Objectives: Students will be able to… Describe what an exothermic and endothermic reactions is in terms of heat energy transfer Give and identify examples of endothermic and exothermic reactions in everyday life Identify reactions as exothermic or endothermic from measuring temperature changes in practical investigations This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions.
Chemical Reactions and Physical Changes
emily_k_brown1994emily_k_brown1994

Chemical Reactions and Physical Changes

(0)
A comprehensive, engaging and interactive lesson package designed with non-science/non-chemistry specialist teachers in mind! This lesson contains: Lesson powerpoint - including teacher delivery notes in “notes” section Student led lesson worksheet Teacher answer sheet Practical Risk Assessment Lesson resources contain: In-built challenge tasks throughout In-built scaffolded learning for lower abilities Objectives: Students will be able to… Describe what physical changes and chemical reactions are Know the different signs of a chemical reaction taking place Class different examples as either physical changes or chemical reactions Describe the difference between a physical change and chemical reaction This lesson contains a student led lesson sheet, with the focus being on students learning through doing, practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions.
Instrumental Analysis and Flame Spectra
emily_k_brown1994emily_k_brown1994

Instrumental Analysis and Flame Spectra

(0)
A lesson covering instrumental analysis and flame emission spectroscopy for the AQA Triple Chemistry GCSE specficiation. Applicable to both higher and foundation candidates. Lesson Objectives Know what instrumental techniques are Describe advantages and disadvantages of instrumental techniques over other analysis techniques (e.g. flame tests) Interpret flame emission spectra to identify unknown elements in a mixture Lesson Resources include: Lesson powerpoint - including starter, example spectra, spectra analysis example and advantages/disadvantages task Exam questions covering instrumental analysis, flame spectra analysis, and ion identification questions with full mark schemes.
Formation of Crude Oil Storyboard
emily_k_brown1994emily_k_brown1994

Formation of Crude Oil Storyboard

(0)
A quick and simple student led activity designed for AQA GCSE Chemistry (Triple and Double award) explaining how crude oil is formed from plankton. Students should put the cartoon panels in the right order, then match the correct description to each panel. This can be a cut and stick activity or a numbering/line drawing activity. Good for SEN and students in need of visual cues and support. Resource download includes PDF and Editable Powerpoint versions.
Writing Word Equations
emily_k_brown1994emily_k_brown1994

Writing Word Equations

(0)
A comprehensive, engaging, challenging and interactive lesson package designed with AEN students and non-science/non-chemistry specialist teachers in mind! This lesson contains: Lesson powerpoint - including teacher notes and answers in “notes” section Student led lesson worksheet Teacher answer sheet Lesson resources contain: In-built challenge tasks throughout In-built scaffolded learning for lower abilities Various activites to assess progress and understanding that you can tailor to fit any class or available resources Objectives: Students will be able to… Identify reactants and products in a word equation Write word equations for different reactions Turn word equations into sentences Describe and explain why we use word equations in chemistry This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions. This lesson contains AFL tasks which require mini-whiteboards, but can be adapted if these are not available.
The Law of Conservation of Mass
emily_k_brown1994emily_k_brown1994

The Law of Conservation of Mass

(0)
A comprehensive, engaging, challenging and interactive lesson package designed with AEN students and non-science/non-chemistry specialist teachers in mind! This lesson contains: Lesson powerpoint - including teacher notes and answers in “notes” section Student led lesson worksheet Teacher answer sheet Lesson resources contain: In-built challenge tasks throughout In-built scaffolded learning for lower abilities AFL activities to assess progress and understanding that you can tailor to fit any class or available resources Objectives: Students will be able to… Define the law of conservation of mass Explain why the mass of a chemical reaction does not change in a closed system Predict/calculate the mass of reactants and products in a chemical reaction when given the masses of the other reactants/products This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions.
Calculating Percentage by Mass
emily_k_brown1994emily_k_brown1994

Calculating Percentage by Mass

(0)
A fully resourced lesson for GCSE AQA chemistry on calculating percentage by mass. Suitable and applicable for GCSE Chemistry Trilogy, and Combined Science Higher and Foundation. Lesson Objectives Recall how to calculate relative formula mass using a periodic table Calculate the percentage by mass of an element in a substance using masses Calculate the percentage by mass of an element in a substance using relative formula mass and atomic mass Lesson includes: Lesson powerpoint (including instructions on lesson activities, equipment to order, slide answers) Student practical Student worksheet (PDF and editable word versions) Student worksheet answers (PDF and editable word versions)
KS3 - Writing Risk Assessments
emily_k_brown1994emily_k_brown1994

KS3 - Writing Risk Assessments

(0)
This lesson is the second lesson in the Year 8 “Working as a Scientist” topic. This lesson covers what a hazard, risk and control measure are, what some common hazards are in a lab and how to control them, as well as a practical investigation for students to write their own risk assessment. Lesson Objectives: State common risks from hazards Describe how these risks are managed Write a risk assessment for a scientific investigation I will work scientifically to: Carry out a practical investigation safely Lesson resources contain: Powerpoint - containing information slides, student mini-whiteboard AFL quiz, complete and interactive answer slides, plenary activity Student practical worksheet (PDF and editable word versions)
Elements and Compounds
emily_k_brown1994emily_k_brown1994

Elements and Compounds

(0)
A comprehensive, engaging, challenging and interactive lesson package designed with non-science/non-chemistry specialist teachers in mind! This lesson contains: Lesson powerpoint - including teacher notes and answers in “notes” section Student led lesson worksheet Teacher answer sheet Lesson resources contain: In-built challenge tasks throughout In-built scaffolded learning for lower abilities Various activites to assess progress and understanding that you can tailor to fit any class or available resources Objectives: Students will be able to… Know what an “element” and a “compound” is Describe the difference between an element and a compound Know what an “atom” and a “molecule” Describe the difference between an atom and a molecule This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions. This lesson contains AFL tasks which require mini-whiteboards and molymods, but can be adapted if these are not available.
Electrochemical Cells
emily_k_brown1994emily_k_brown1994

Electrochemical Cells

(0)
Preview video of resources: https://youtu.be/WWaqwYbo6IY A pair of GCSE Chemistry Lessons for Triple Science covering electrochemical cells and associated half equations. Lesson 1: What are Electrochemical Cells? Lesson Objectives: Describe what an electrochemical cell is and what we use it for Describe how to make an electrochemical cell Identify factors which affect the size of the voltage produced by an electrochemical cell This lesson contains: Lesson powerpoint Student practical investigation Teacher notes on how to deliver lesson slides/content and answers Lesson 2: How do Electrochemical Cells Work? Lesson Objectives: Recall the definitions for oxidation and reduction Identify which elements are oxidised and reduced in an electrochemical cell (H) – write half equations for oxidation and reduction taking place in electrochemical cells Explain why alkaline/non-rechargeable batteries eventually stop working This lesson contains: Lesson powerpoint, containing animation about how electrochemical cells produce electrical current and the reactions that take place within it Student exam questions (23 marks worth) from AQA syllabus with mark scheme Teacher notes on how to deliver lesson slides/content and answers
Naming Chemical Compounds
emily_k_brown1994emily_k_brown1994

Naming Chemical Compounds

(0)
A comprehensive, engaging, challenging and interactive lesson package designed with SEN and non-science/non-chemistry specialist teachers in mind! This lesson contains: Lesson powerpoint - including teacher notes and answers in “notes” section Student led lesson worksheet Teacher answer sheet Lesson resources contain: In-built challenge tasks throughout In-built scaffolded learning for lower abilities Various activites to assess progress and understanding that you can tailor to fit any class or available resources Objectives: Students will be able to… Name simple compounds ending in –ide, -hydroxide and –ate Name simple compounds using the mono-, di-, tri- naming system Be able to identify the elements present in a compound from its name Be able to name a compound from its formula This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions. This lesson contains AFL tasks which require mini-whiteboards but can be adapted if these are not available.
GCSE Chemistry - Fuel Cells
emily_k_brown1994emily_k_brown1994

GCSE Chemistry - Fuel Cells

(0)
A 1-2 Lesson Resources on Hydrogen fuel cells, their uses, how they work and their advantages and disadvantages compared to petrol cars and electric cars. Lesson Objectives Describe, in basic terms, how a hydrogen fuel works (Higher only) write balanced half equations for the reactions taking place inside a hydrogen fuel cell Describe advantages and disadvantages of hydrogen fuel cells Evaluate the use of hydrogen fuel vehicles compared to electric and petrol vehicles Lesson resources include: Lesson powerpoint with printable diagrams for students Explanations of half equations from fuel cell (both acid cell (not AQA) and alkaline cell (AQA) version) and balancing them Relevant video links 6 marker question and mark scheme Exam question pack on fuel cells and energy Plenary AFL multiple choice quiz and debate activity
Calculating Relative Atomic Mass
emily_k_brown1994emily_k_brown1994

Calculating Relative Atomic Mass

(0)
This lesson is designed for AQA GCSE Chemistry/Combined Science Trilogy and covers how to calculate relative atomic mass. This lesson contains: A lesson powerpoint complete with all answers, worked examples Student worksheet (PDF and editable versions) Worksheet answers (PDF and editable versions) Lesson Objectives: Define what an “isotope” is and identify examples Calculate the relative atomic mass of elements from their relative isotopic masses and abundances
Chemical Formulas and Counting Atoms
emily_k_brown1994emily_k_brown1994

Chemical Formulas and Counting Atoms

(0)
A comprehensive, engaging, challenging and interactive lesson package designed with non-science/non-chemistry specialist teachers in mind! **This lesson contains: ** Lesson powerpoint - including teaching notes and answers in “notes” section Student led lesson worksheet Teacher answer sheet Lesson resources contain: In-built challenge tasks throughout In-built scaffolded learning for lower abilities Various activites to assess progress and understanding that you can tailor to fit any class or available resources Lesson Objectives: Students will be able to… Describe what a chemical symbol is and explain why we use them Identify elements from their chemical symbols using a periodic table Classify chemical formulas as representing either elements or compounds Understand how to count the number of atoms in a chemical formula containing subscripts This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up. This lesson contains AFL which makes use of molymods and mini-whiteboards, but can be adapted if these resources are not available.
Testing for Positive Metal Ions
emily_k_brown1994emily_k_brown1994

Testing for Positive Metal Ions

(0)
A 1-2 lesson pack covering flame tests and positive metal ion tests. This resource is designed for the AQA Triple Chemistry required practical from “Chemical Analysis”, and is relevant to higher and foundation students. Lesson Objectives Carry out simple flame tests to identify positive metal ions Carry out simple precipitate tests to identify positive metal ions Describe how to carry out a flame test and a precipitate test, including the names of any important reactants Describe the problems and limitations of using flame tests and precipitate tests to identify positive metal ions This resource contains: Lesson powerpoint - including starter activity, practical instructions, tables, challenge task, multiple choice quiz plenary, and full answers Student worksheet - including practical instructions, tables, and practical quesitons (PDF and editable word versions) Student worksheet answers (PDF and editable word versions) Risk assessment/order form - containing up to date CLEAPPS guidance as of Oct 2023.
Extracting Aluminium from Aluminium Oxide
emily_k_brown1994emily_k_brown1994

Extracting Aluminium from Aluminium Oxide

(0)
A full lesson designed for GCSE chemistry AQA specification. This lesson covers the case study of the extraction of aluminium oxide, the role of cryolite, what happens to the aluminium and oxide ions at the electrodes, and the need for the replacement of the positive electrode. This lesson contains A lesson powerpoint including all useful youtube video links, interactive plenary multiple choice quiz, electroplating challenge task and complete answers. A guided reading activity with quesitons and complete answer sheet (PDF and editable versions) An alternative information hunt sheet to be used with videos and/or the AQA GCSE Chemistry textbook, with complete answers (PDF and editable versions) Video clip to aid in completion of both sheets Lesson Objectives State two reasons why extracting aluminium oxide from its ore is expensive Describe why cryolite is added to aluminium oxide during electrolysis Describe and explain what happens to ions at the positive and negative electrode (and give relevant half equations (Higher only)) Explain why the positive electrode must continually be replaced
GCSE Triple Chemistry: Chemical Analysis
emily_k_brown1994emily_k_brown1994

GCSE Triple Chemistry: Chemical Analysis

3 Resources
This bundle contains all the content relevant to AQA Triple Chemistry students in the new 9-1 syllabus. Includes 4 LESSONS worth of teaching materials: This includes the standard tests and characteristic results/colour changes for: positive metal ion flame tests (Li, Cu, K, Na, Ca), positive metal ion precipitate tests with NaOH (Fe(III), Fe(II), Cu(II), Mg, Ca, Al) sulfate test with barium nitrate/chloride halide tests (Cl, Br and I) with silver nitrate carbonate tests with dilute acid and lime water These lessons contain full powerpoints, student worksheets, complete answers, risk assessments/technician order forms, stretch and challenge tasks, relevant exam questions, and AfL plenary activities Lesson 1-2: Identifying positive metal ions (flame tests and precipitate tests) Lesson objectives: Carry out simple flame tests to identify positive metal ions Carry out simple precipitate tests to identify positive metal ions Describe how to carry out a flame test and a precipitate test, including the names of any important reactants Describe the problems and limitations of using flame tests and precipitate tests to identify positive metal ions Lesson 3 - Identifying negative non-metal ions Lesson objectives: Carry out simple precipitate tests to identify halide, sulfate and carbonate ions Describe how to carry out precipitate tests to test for halide, sulfate and carbonate ions, including the names of any important reactants Write balanced symbol and ionic equations for the reactions taking place in precipitation reactions Lesson 4 - Instrumental Analysis and Flame Emission Spectra Lesson objectives: Know what instrumental techniques are Describe advantages and disadvantages of instrumental techniques over other analysis techniques (e.g. flame tests) Interpret flame emission spectra to identify unknown elements in a mixture Lesson resources include: Complete and full powerpoints - including starter activities, challenge activities, tables of results, practical instructions, questions with complete answers Student worksheets and practical sheets with instructions and tables for results (PDF and editable word versions) Student worksheet answers (PDF and editable word versions) Practical risk assessments/order forms (up to date with CLEAPPS data as of Oct 2023) Relevant practice exam questions with mark schemes and examiners reports.
Chemistry GCSE 9-1 - Reactions of Acids
emily_k_brown1994emily_k_brown1994

Chemistry GCSE 9-1 - Reactions of Acids

(8)
An interactive powerpoint resource designed for distance learning from home. Students can work their way through questions on the powerpoints and all answers are revealed within the slides. By the end of this resource, students should be able to: Know how an acid reacts with metals, metal oxides (bases), metal hydroxides (alkalis), and metal carbonates Write general equations, word equations and balanced symbol equations for reactions of acids HIGHER – Be able to write ionic equations for the reactions of acids NOTE: Students should already have some idea how to balance an equation and work out the formula of an ionic compound before attempting this lesson.
AQA 9-1 GCSE Chem - Acids and Alkalis
emily_k_brown1994emily_k_brown1994

AQA 9-1 GCSE Chem - Acids and Alkalis

(1)
Resource designed for distance learning - GCSE Chemistry AQA - Chemical Changes - Acids and Alkalis Contains links to useful youtube videos and extension acitivites Students should be able to: Identify common acids and alkalis Know what ions are found in acids and alkalis Know what an indicator is and give pros and cons for each
Edexcel AS Organic Chemistry Reactions and Mechanisms Map
emily_k_brown1994emily_k_brown1994

Edexcel AS Organic Chemistry Reactions and Mechanisms Map

(2)
Resource contains a PDF of a blank mechanism map for AS chemistry students studying the new Edexcel syllabus (2016 onwards). There is a blank and completed version of the map containing all reactions, mechanisms, conditions etc… that students should know for AS Organic Chemistry (Topic 6)