A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This fully-resourced lesson looks at the details of glycolysis as the first stage of aerobic and anaerobic respiration and explains how the sequence of reactions results in glucose being converted to pyruvate. The engaging PowerPoint and accompanying differentiated resources have been designed to cover the second part of point 5.2 of the AQA A-level Biology specification which states that students should know glycolysis as the phosphorylation of glucose and the production and subsequent oxidation of triose phosphate.
The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the hexoses and the production of the ATP, coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed.
This lesson has been written to tie in with the other uploaded lessons on anaerobic respiration and the different stages of aerobic respiration (the Link reaction, Krebs cycle and oxidative phosphorylation)
This bundle of 9 lesson PowerPoints and accompanying resources contain a wide variety of tasks which will engage and motivate the students whilst covering the details of topic 2.1 of the AQA A-level Biology specification. Cells and their structure are linked to all of the other 7 topics in this course so a clear understanding is critical to a student’s success.
The tasks which include exam-style questions (with displayed mark schemes), discussion points and quiz competitions will cover the following parts of topic 2.1:
The structure and function of the cell-surface membrane, nucleus, nucleolus, mitochondria, chloroplasts, Golgi apparatus, lysosomes, ribosomes, RER and SER, cell wall and cell vacuole
The specialised cells of complex, multicellular organisms
The structures of a typical prokaryotic cell
The differences between prokaryotic and eukaryotic cells
The structure of viruses
The principles and limitations of optical microscopes, transmission electron microscopes and scanning electron microscopes
Measuring the size of an object using an optical microscope
Using the magnification formula
The principles of cell fractionation and ultracentrifugation
If you would like to sample the quality of these lessons, then download the eukaryotic animal cells, viruses and microscopes lessons as these have been uploaded for free
Hours and hours of planning have gone into each and every lesson that’s included in this bundle to ensure that the students are engaged and motivated whilst the detailed content of topic 2 of the Edexcel International A-level Biology specification is covered. Membranes, proteins, DNA and gene expression represent some of the most important structures, molecules and processes involved in this subject and a deep understanding of their role in living organisms is important for a student’s success.
The 20 lesson PowerPoints and accompanying resources contain a wide range of activities which cover the following topic 2 specification points:
Know the properties of gas exchange surfaces in living organisms
Understand how the rate of diffusion can be calculated using Fick’s Law of Diffusion
Understand how the structure of the mammalian lung is adapted for rapid gas exchange
The structure and properties of cell membranes
The movement of free water molecules by osmosis
The movement across membranes by passive and active transport
The role of channel and carrier proteins in membrane transport
The basic structure of an amino acid
The formation of polypeptides and proteins
The structure of proteins
The mechanism of action and specificity of enzymes
Enzymes are biological catalysts
Intracellular and extracellular enzymes
The basic structure of mononucleotides
The structure of DNA and RNA
The process of DNA replication
The nature of the genetic code
A gene as a sequence of bases on DNA that codes for a sequence of amino acids
The process of transcription and translation
Errors in DNA replication give rise to mutations
Mutations give rise to disorders but many mutations have no observable effect
The meaning of key genetic terms
Understanding the pattern of monohybrid inheritance
Sex linkage on the X chromosome
Understand how the expression of a gene mutation in people with cystic fibrosis impairs the functioning of the gaseous exchange, digestive and reproductive systems
The uses and implications of genetic screening and prenatal testing
Due to the detail included in all of these lessons, it is estimated that it will take in excess of 2 months of allocated A-level teaching time to complete the teaching of the bundle
If you would like to sample the quality of these lessons, then download the rapid gas exchange, osmosis, DNA & RNA, genetic code, genetic terms and cystic fibrosis lessons as these have been uploaded for free.
It’s no coincidence that cell structure and biological molecules find themselves as topics 1 and 2 of the CIE A-level Biology course, because a clear understanding of their content is absolutely critical to promote success with the 17 topics that follow.
Hours and hours of intricate planning has gone into the 18 lessons included in this bundle to ensure that the detailed content is relevant and can be understood and that links are made to related sections of topics 3 - 19. The lesson PowerPoints and accompanying resources contain a wide range of activities that include:
differentiated exam-style questions with clear mark schemes
directed discussion points
quiz competitions to introduce key terms and values
current understanding and prior knowledge checks
Due to the detail included in these lessons, it is estimated that it will take in excess of 2 months of allocated teaching time to cover the content of the resources
A number of the resources have been shared for free so these can be downloaded in order to sample the quality of the lessons
This fully-resourced lesson describes how enzyme and substrate concentration affect the rate of enzyme activity. The PowerPoint and accompanying resources are the last in a series of 3 lessons which cover the detail of point 1.5 (iv) of the Edexcel A-level Biology B specification.
The first part of the lesson describes how an increase in substrate concentration will affect the rate of reaction when a fixed concentration of enzyme is used. Time is taken to introduce limiting factors and students will be challenged to identify substrate concentration as the limiting factor before the maximum rate is achieved and then they are given discussion time to identify the possible factors after this point. A series of exam-style questions are used throughout the lesson and the mark schemes are displayed to allow the students to assess their understanding and for any misconceptions to be immediately addressed. Moving forwards, the students have to use their knowledge of substrate concentration to construct a graph to represent the relationship between enzyme concentration and rate of reaction and they have to explain the different sections of the graph and identify the limiting factors.
The final section of the lesson describes how the availability of enzymes is controlled in living organisms. Students will come to recognise that this availability is the result of enzyme synthesis and enzyme degradation and their recall of transcription and translation is tested through a SPOT the ERRORs task.
Please note that this lesson explains the Biology behind the effect of concentration on enzyme-controlled reactions and not the methodology involved in carrying out such an investigation as this is covered in a core practical lesson.
This fully-resourced lesson describes how vaccinations are used to control disease and how immunity can be natural, artifical, active and passive. The engaging PowerPoint and accompanying resources have been designed to cover points 6.7 (v) & (vi) of the Edexcel A-level Biology B specification and there is also a description and discussion on the development of herd immunity.
The previous lesson finished with a series of exam questions where students observed differences between the primary and secondary immune responses so the start of this lesson uses an imaginary game of TOP TRUMPS to challenge them on the depth of their understanding. This will act to remind them that a larger concentration of antibodies is produced in a quicker time in the secondary response. The importance of antibodies and the production of memory cells for the development of immunity is emphasised and this will be continually referenced as the lesson progresses. The students will learn that this response of the body to a pathogen that has entered the body through natural processes is natural active immunity. Moving forwards, time is taken to look at vaccinations as an example of artificial active immunity. Another series of questions focusing on the MMR vaccine will challenge the students to explain how the deliberate exposure to antigenic material activates the immune response and leads to the retention of memory cells. A quick quiz competition is used to introduce the variety of forms that the antigenic material can take along with examples of diseases that are vaccinated against using these methods. The eradication of smallpox is used to describe the concept of herd immunity and the students are given time to consider the scientific questions and concerns that arise when the use of this pathway is a possible option for a government. The remainder of the lesson looks at the different forms of passive immunity and describes the drawbacks in terms of the need for a full response if a pathogen is re-encountered.
This lesson describes the role of the hypothalamus and the mechanisms of thermoregulation that maintain the body in dynamic equilibrium during exercise. The PowerPoint has been designed to cover point 7.12 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification.
Students were introduced to homeostasis at GCSE and this lesson has been written to build on that knowledge and to add the key detail needed at this level. Focusing on the three main parts of a homeostatic control system, the students will learn about the role of the internal and peripheral thermoreceptors, the thermoregulatory centre in the hypothalamus and the range of effectors which bring about the responses to restore optimum levels.
The following responses are covered in this lesson:
Vasodilation
Increased sweating
Body hairs
In each case, time is taken to challenge students on their ability to make links to related topics such as the arterioles involved in the redistribution of blood and the high specific latent heat of vaporisation of water.
This detailed and engaging lesson describes the different ecological techniques used to assess the abundance and distribution of organisms in a habitat. In line with point 10.1 (iv) of the Edexcel A-level biology B specification, the following techniques are included in the PowerPoint and accompanying resources:
quadrats (of differing areas)
transects
ACFOR scale
percentage cover
The mathematical element of the course is challenged in the early stages of this lesson, when the students have to estimate the populations of different plant species using data obtained with a quadrat. Understanding checks are used throughout the lesson to allow the students to assess their progress against the current topic and they are encouraged to consider the advantages and disadvantages of each technique.
This lesson describes how epigenetic changes like DNA methylation and histone modification can modify the activation of certain genes. The PowerPoint and accompanying resources have been planned to cover points 3.14 ii & iii of the Pearson Edexcel A-level biology (Salters-Nuffield) specification.
The lesson begins by introducing the prefix epi- as meaning on or above in Greek to allow students to recognise that epigenetics refers to changes in gene function due to factors beyond the genetic code. Moving forwards, they will learn that DNA methylation involves the attachment of a methyl group to cytosine and will come to understand how this inhibits transcription. They are challenged to recognise the pathogenesis of atherosclerosis through a variety of tasks before reading through a source detailing the results of a study between this cardiovascular condition and DNA methylation.
The remainder of the lesson considers how the acetylation of histone proteins affects the expression of genes.
Understanding and prior knowledge checks are embedded throughout the lesson (along with the answers) to allow the students to assess their progress on this topic and to encourage them to make links to the content of topics 1 - 2.
This lesson guides students through the stages of the nitrogen cycle, focusing on the vital roles performed by microorganisms in this cycle. The detailed PowerPoint and accompanying resources are part of the 1st lesson in a series of 3 lessons which have been planned to cover point 5.4 (nutrient cycles) of the AQA A-level biology specification.
The lesson begins by challenging students to recall two monomers containing nitrogen that were met in topic 1, allowing them to recognise that this chemical element is a key component of nucleotides in DNA and amino acids, which are needed to synthesise proteins. Moving forwards, they will learn that despite the high % of nitrogen in the Earth’s atmosphere, it cannot be used directly by plants, and therefore plants need a supply of “fixed” nitrogen. A diagram is constantly updated and displayed as new information is introduced and this supports their understanding. The students will discover that microorganisms are involved in nitrogen fixation, decomposition and ammonification, nitrification, and denitrification. As each of these biological actions is introduced, time is spent considering key details and understanding checks are used to allow the students to assess their progress. There are also several prior knowledge checks, where students are encouraged to make links to content met in topics 1 - 4. Answers to all questions are embedded into the PowerPoint.
All 5 lessons included in this bundle have been filled with a variety of tasks to engage the students whilst covering the content of topic 6.1 of the AQA A-level biology specification, titled “Stimuli, both internal and external, are detected and lead to a response”. These tasks include understanding and prior knowledge checks to allow the students to assess their progress against the current topic, as well as making links to relevant topics from earlier in the course.
The “responses in flowering plants” lesson has been shared for free, so you might choose to download this first to give an indication of the quality of the lessons in this bundle.
This lesson describes the structure of the mammalian liver, focusing on the blood vessels and bile canaliculi, as well as the hepatocytes. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 2 lessons which cover point 5.1.2 (b) of the OCR A-level biology A specification.
As shown on the cover image, the lesson begins with a challenge, where the students have to recognise that the liver is supplied with oxygenated blood by the hepatic artery. Three editions of the quiz “SAY WHAT YOU SEE” are used to introduce three key terms in an engaging and memorable fashion which are hepatic portal vein, sinusoids, and bile canaliculi. Following the introduction of the hepatic portal vein and sinusoids, the students will understand that the liver is supplied by two vessels and that the blood mixes in the sinusoids. Time is then taken to focus on the hepatocytes, through 3 exam-style questions that consider the type of epithelium these liver cells are found in, the microvilli on their surface and the organelles which are abundant based on function.
Moving forwards, the lesson discusses the function of the stellate cells that are found in the space of Disse, before a task challenges their recall of content from a previous lesson to reveal the name of the cells that move within the sinusoids, the Kupffer cells. Students will learn that these macrophages breakdown the haemoglobin in old erythrocytes to form bilirubin. This reminds them that liver cells produce bile and the remainder of the lesson discusses how this fluid flows along the bile canaliculi to the ductules which form the common hepatic duct.
The 2nd lesson in this 2-part series describes the functions of the mammalian liver.
This extensive lesson describes the structure of the human brain and the functions of its parts. The engaging PowerPoint and accompanying resources have been designed to be in line with point 5.1.5 (h) of the OCR A-level biology A specification and therefore covers the gross structure of the human brain and the function of the cerebrum, cerebellum, medulla oblongata, hypothalamus and the pituitary gland.
The lesson begins with a knowledge recall challenge, where the students have to complete the diagram showing the organisation of the nervous system, as covered in the previous lesson. This reminds them that the brain is part of the CNS and also reintroduces the autonomic nervous system which will be useful when describing the medulla oblongata. As this is an extensive lesson covering a lot of detail, it has been planned to contain 5 quiz rounds as part of a competition which will help to maintain engagement whilst checking on their recall and understanding of content. There are also multiple understanding and prior knowledge checks which allow the students to assess their progress against the current topic and to make links to previously covered content. All answers to these knowledge checks are embedded into the PowerPoint.
The lesson describes the structure of the cerebrum as two hemispheres and then considers the localisation of function of the 4 lobes of the cerebral cortex. It moves onto the cerebellum, focusing on its role of perfecting and coordinating movement, and explains how this is achieved through neural connections with the cerebrum. The control of heart rate by the medulla oblongata is described before the lesson concludes with an exploration of the connections between the hypothalamus and the two lobes of the pituitary gland, specifically in the mechanisms of osmoregulation and thermoregulation.
Two of the worksheets have been modified to allow students of different understanding levels to access the work.
It is likely that this lesson will take between 2 - 3 hours of teaching time, but sections can be edited and removed if the teacher doesn’t want to look at a particular structure in that detail at this stage of study.
This lesson uses a 10 question multiple-choice assessment to provide students with the opportunity to assess their knowledge of neuronal communication. Module 5.1.3 of the OCR A-level biology A specification covers the role of mammalian sensory receptors, the structure and function of neurones, the generation and transmission of nerve impulses and the structure and roles of synapses and these 10 questions attempt to challenge their overall understanding of this content. The lesson also includes a PowerPoint with the answers to the questions and also further understanding checks to challenge knowledge not directly covered by the multiple-choice assessment. There are also some prior knowledge checks and links to the future.
This lesson describes the course of events that lead to atherosclerosis and explains how the human body can be affected by this inflammatory disease. The engaging PowerPoint and accompanying resources have been planned to cover the content of point 1.10 of the Edexcel International A-level biology specification and therefore includes descriptions of endothelial dysfunction, plaque formation and raised blood pressure.
The lesson begins with a task where the students have to use their knowledge of the numbers associated with biology to move forwards and backwards through the alphabet to reveal the name of the disease, atherosclerosis. Students will learn that this is a chronic inflammatory disease. As shown in the cover image, the main part of the lesson uses a step-by-step guide to go through the events, from endothelium damage, monocyte recruitment, macrophage differentiation and eventually the protrusion of plaques into the lumen of the artery. Understanding and prior knowledge checks and quiz quiz competitions are used during this section of the lesson to allow the students to assess their progress and to introduce key terms in a memorable fashion. All answers to any questions are embedded into the PowerPoint.
The final part of the lesson uses a series of exam-style questions to consider how atherosclerosis in different blood vessels could lead to medical issues such as myocardial infarctions and strokes.
This lesson describes the differences between skeletal, smooth (involuntary) and cardiac muscle. The PowerPoint and accompanying resources form part of the 1st lesson in a series of 3 lessons which have been planned to cover the content of point 5.1.5 (l) (i) of the OCR A-level biology A specification. The other two lessons are “neuromuscular junctions” and “the sliding filament model of muscular contraction”.
The lesson begins with a bit of fun by challenging the students to identify the prep room skeleton from a description and then to recognise that the reason the skeleton doesn’t have free movement or locomotion is because “he” lacks muscles. More specifically, it is the lack of skeletal muscles which prevents bones from moving and this leads into the introduction of this type of muscle tissue as being attached to bones. Time is taken to consider tendons, and more specifically the protein collagen, and students are challenged on their recall of this fibrous protein from module 2.1.2. This lesson contains numerous prior knowledge checks like this, to encourage them to identify the links between topics and modules. All answers to these prior knowledge and understanding checks are embedded into the PowerPoint to allow the students to assess their progress. The structure of skeletal muscle is covered in the 3rd lesson in this series, but this lesson does focus on the structural and functional differences between smooth and cardiac muscle. Students are introduced to intercalated discs and gap junctions in cardiac muscle and are challenged to explain how these features support the stages of the cardiac cycle. Earlier in this module, they covered the regulation of heart rate and a SPOT THE ERRORS task will challenge the detail of their knowledge of this control system. The remainder of the lesson focuses on smooth muscle, using examples in the gut wall, iris and arterial walls to increase relevance.
This lesson describes how epigenetics is the control of gene expression by factors other than changes in the DNA sequence. The PowerPoint and accompanying resources have been planned to cover the content of point (h) from topic 3 of A2 unit 4 of the WJEC A-level biology specification.
As shown in the cover image, the lesson began with a challenge, where the students had to recognise that the prefix epi could go before 4 terms. They will learn that this prefix means on or above in Greek meaning epigenetics can be described as factors causing changes to gene function beyond the genetic code. One of several discussion periods is used to encourage them to identify what is not involved here (i.e. gene mutations), and so, epigenetics is introduced as heritable changes in gene function without changes to the base sequence.
Moving forwards, the process of DNA methylation is introduced, and students are challenged to predict how the addition of a methyl group could inhibit transcription before they have to use their prior knowledge of key terms to complete a passage about this concept. The details of a study which considered the correlation between DNA methylation and atherosclerosis are provided to broaden their knowledge and then they have to answer questions about the study using their knowledge of content from previously covered topics.
The remainder of the lesson discusses acetylation and students will learn that the removal of acetyl groups from histones causes the chromatin to become highly condensed and prevents the transcription of the gene.
This detailed lesson describes and explains the pressure and volume changes and associated valve movements that occur during the cardiac cycle to maintain the unidirectional flow of blood. The PowerPoint and accompanying resource have been designed to cover the 5th part of point 3.4.1 of the AQA A-level Biology specification.
The start of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by diastole. Students are challenged on their prior knowledge of the structure of the heart as they have to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the rest of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. The final part of the lesson covers the changes in the volume of the ventricle.
This lesson has been written to tie in with the other uploaded lessons on the circulatory system as detailed in topic 3.4.1 (Mass transport in animals)
This detailed lesson describes how the movement of water molecules by osmosis can affect both plant and animal cells. Both the PowerPoint and accompanying resources have been designed to cover specification point 2.1.5 (e) [i] as detailed in the OCR A-level Biology A specification and there is a particular focus on solutions of different water potentials.
It’s likely that students will have used the term concentration in their osmosis definitions at GCSE, so the aim of the starter task is to introduce water potential to allow students to begin to recognise osmosis as the movement of water molecules from a high water potential to a lower potential, with the water potential gradient. Time is taken to describe the finer details of water potential to enable students to understand that 0 is the highest value (pure water) and that this becomes negative once solutes are dissolved. Exam-style questions are used throughout the lesson to check on current understanding as well as prior knowledge checks which make links to previously covered topics such as the lipid bilayer of the cell membrane. The remainder of the lesson focuses on the movement of water when animal and plant cells are suspended in hypotonic, hypertonic or isotonic solutions and the final appearance of these cells is described, including any issues this may cause.
This lesson has been specifically written to tie in with the previous two lessons covering 2.1.5 (b) & (d) where the cell membrane, diffusion and active transport were described.
This fully-resourced lesson describes the relationship between the structure, properties and functions of triglycerides in living organisms. The engaging PowerPoint and accompanying worksheets have been designed to cover the first part of point (f) as detailed in AS unit 1, topic 1 of the WJEC A-level Biology specification and links are also made to related future topics such as the importance of the myelin sheath for the conduction of an electrical impulse which is covered in A2.
The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from earlier in topic 1 so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of a triglyceride mean that it has numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.