Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1246k+Views

2049k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Light-independent reaction (AQA A-level Biology)
GJHeducationGJHeducation

Light-independent reaction (AQA A-level Biology)

(0)
This fully-resourced lesson describes the light independent reaction of photosynthesis and explains how reduced NADP is used to form a simple sugar. The detailed PowerPoint and accompanying resources have been designed to cover the second part of point 5.1 of the AQA A-level Biology specification and lengthy planning has ensured that links are continually made to the previous lesson on the light-dependent reaction so that students can understand how the products of that stage are essential for the Calvin cycle The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the light-independent stage. This immediately introduces RuBP, GP and TP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RuBisCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to TP The use of the majority of the TP in the regeneration of RuBP A step-by-step guide, with selected questions for the class to consider together, is used to show how 6 turns of the cycle are needed to form the TP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed. This lesson has been specifically written to tie in with the previous lessons on the structure of a chloroplast and the light-dependent stage as well as upcoming lesson on limiting factors
Haemoglobin & the Bohr effect (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Haemoglobin & the Bohr effect (Edexcel Int. A-level Biology)

(0)
This lesson describes the role of haemoglobin in transport and explains the change in the dissociation curve when there is an increased concentration of carbon dioxide (the Bohr effect). The detailed PowerPoint and accompanying resources have been designed to cover points 1.9 (i) & (ii) of the Edexcel International A-level Biology specification and this lesson also compares the oxyhaemoglobin dissociation curve of foetal haemoglobin against maternal haemoglobin. The lesson begins with a version of the quiz show Pointless and this introduces haemotology as the study of the blood conditions. Students are told that haemoglobin has a quaternary structure as it is formed of 4 polypeptide chains which each contain a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. At this point, foetal haemoglobin and its differing affinity of oxygen is introduced and students are challenged to predict whether this affinity will be higher or lower than adult haemoglobin and to represent this on their dissociation curve. Moving forwards, the different ways that carbon dioxide is transported around the body involving haemoglobin are described and the dissociation of carbonic acid into hydrogen ions is discussed so that students can understand how this will affect the affinity of haemoglobin for oxygen in the final part of the lesson on the Bohr effect. A quick quiz is used to introduce Christian Bohr and the students are given some initial details of his described effect. This leads into a series of discussions where the outcome is the understanding that an increased concentration of carbon dioxide decreases the affinity of haemoglobin for oxygen. The students will learn that this reduction in affinity is a result of a decrease in the pH of the cell cytoplasm which alters the tertiary structure of the haemoglobin. The lesson finishes with a series of questions where the understanding and application skills are tested as students have to explain the benefit of the Bohr effect for an exercising individual.
Immobilising an enzyme (CIE A-level Biology)
GJHeducationGJHeducation

Immobilising an enzyme (CIE A-level Biology)

(0)
This lesson describes how enzymes can be immobilised in calcium alginate and compares their activity against enzymes that are free in solution. The PowerPoint and the accompanying resources have been designed to cover point 3.2 (d) of the CIE A-level Biology specification. The lesson has been planned to challenge the students on their ability to apply knowledge to a potentially unfamiliar situation. A series of exam-style questions which include “suggest” and “describe and explain” questions are used throughout the lesson and these will allow the students to recognise the advantages and disadvantages of a particular method. Although the alginate method is the only one referenced in this specification point, the adsorption and covalent bonding methods are introduced and then briefly analysed to allow students to understand that a matrix doesn’t involve these bonds which could disrupt the active site. The remainder of the lesson introduces some actual examples of the use of immobilised enzymes with the aim of increasing the relevance. Please note that this lesson has been written to explain the effect of immobilisation on enzyme activity. The practical element of carrying out the investigation is described in a separate lesson.
Competitive & non-competitive inhibitors (AQA A-level Biology)
GJHeducationGJHeducation

Competitive & non-competitive inhibitors (AQA A-level Biology)

(0)
This lesson describes and explains how increasing the concentration of inhibitors affects the rate of an enzyme-controlled reaction. The PowerPoint and accompanying resource are the last in a series of 5 lessons which cover the content detailed in point 1.4.2 of the AQA A-level Biology specification and describes the effect of both competitive and non-competitive inhibitors. The lesson begins with a made up round of the quiz show POINTLESS called “Biology opposites” and this will get the students to recognise that inhibition is the opposite of stimulation. This introduces inhibitors as substances that reduce the rate of a reaction and students are challenged to use their general knowledge of enzymes to identify that inhibitors prevent the formation of the enzyme-substrate complex. Moving forwards, a quick quiz competition generates the abbreviation EIC (representing enzyme-inhibitor complex) and this introduces competitive inhibitors as substances that occupy the active site. The students are asked to apply their knowledge to a new situation to work out that these inhibitors have a similar shape to the enzyme’s substrate molecule. A series of exam-style questions are used throughout the lesson and at this point, the students are challenged to work out that an increase in the substrate concentration would reduce the effect of a fixed concentration of a reversible competitive inhibitor. The rest of the lesson focuses on non-competitive inhibitors and time is taken to ensure that key details such as the disruption of the tertiary structure is understood and biological examples are used to increase the relevance. Again, students will learn that increasing the concentration of the inhibitor results in a greater inhibition and a reduced rate of reaction but that increasing the substrate concentration cannot reduce the effect as was observed with competitive inhibitors.
Topics 7 & 8: Transport in plants & mammals (CIE A-level Biology)
GJHeducationGJHeducation

Topics 7 & 8: Transport in plants & mammals (CIE A-level Biology)

11 Resources
This bundle contains 11 fully-resourced lessons which will engage and motivate the students whilst covering the following specification points in topics 7 and 8 of the CIE A-level Biology specification: TOPIC 7 The structure of xylem vessel elements, phloem sieve tube elements and companion cells The relationship between the structure and function of xylem vessel elements, phloem sieve tube elements and companion cells Explain how hydrogen bonding of water molecules is involved with the movement in the xylem by cohesion-tension in transpiration pull and adhesion to cell walls The pathways and mechanisms by which water and mineral ions are transported from the soil to the xylem and from roots to leaves Assimilates move between sources and sinks between phloem sieve tubes The mechanism by which sucrose is loaded into the phloem The mass flow of phloem sap down a hydrostatic pressure gradient TOPIC 8 The double, closed circulatory system of a mammal The relationship between the structure and function of arteries, veins and capillaries The role of haemoglobin in carrying oxygen and carbon dioxide The significance of the oxygen dissociation curve of adult haemoglobin at different carbon dioxide concentrations The external and internal structure of the heart The cardiac cycle The role of the SAN, AVN and Purkyne tissue in the initiation and conduction of the heart action The lesson PowerPoints and accompanying resources contain a wide range of tasks which include exam-style questions with mark schemes, discussion points and quiz competitions that will check on current understanding as well as making links to previously covered topics.
The effect of concentration on enzyme activity (OCR A-level Biology)
GJHeducationGJHeducation

The effect of concentration on enzyme activity (OCR A-level Biology)

(0)
This fully-resourced lesson describes the effects of enzyme and substrate concentration on enzyme activity. The PowerPoint and accompanying resources are the third in a series of 3 lessons which cover the details of point 2.1.4 (d) [i] of the OCR A-level Biology A specification and students are also challenged on their recall of the details of transcription and translation as covered in module 2.1.3. The first part of the lesson describes how an increase in substrate concentration will affect the rate of reaction when a fixed concentration of enzyme is used. Time is taken to introduce limiting factors and students will be challenged to identify substrate concentration as the limiting factor before the maximum rate is attained and then they are given discussion time to identify the possible factors after this point. A series of exam-style questions are used throughout the lesson and the mark schemes are displayed to allow the students to assess their understanding and for any misconceptions to be immediately addressed. Moving forwards, the students have to use their knowledge of substrate concentration to construct a graph to represent the relationship between enzyme concentration and rate of reaction and they have to explain the different sections of the graph and identify the limiting factors. The final section of the lesson describes how the availability of enzymes is controlled in living organisms. Students will come to recognise that this availability is the result of enzyme synthesis and enzyme degradation and a SPOT THE ERRORS task is used to challenge their recall of protein synthesis. Please note that this lesson explains the Biology behind the effect of concentration on enzyme activity and not the methodology involved in carrying out such an investigation as this is covered in the lessons designed in line with point 2.1.4 (d) [ii]
The effect of temperature on enzyme activity (OCR A-level Biology)
GJHeducationGJHeducation

The effect of temperature on enzyme activity (OCR A-level Biology)

(0)
This lesson explains the effects of temperature increases on enzyme activity and describes how to calculate the temperature coefficient. The PowerPoint and the accompanying resource are part of the second lesson in a series of 3, which cover the content detailed in point 2.1.4 (d) [i] of the OCR A-level Biology A specification and this lesson has been specifically planned to tie in with an earlier lesson covering 2.1.4 (a, b & c) where the roles and mechanism of action of enzymes were introduced. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these lessons in modules 6 and 5. Moving forwards, the next part of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and are challenged to complete the graph to show how the rate of reaction decreases to 0 when the enzyme has denatured. The final part of the lesson introduces the Q10 temperature coefficient and students are challenged to apply this formula to calculate the value for a chemical reaction and a metabolic reaction to determine that enzyme-catalysed reactions have higher rates of reaction Please note that this lesson has been designed specifically to explain the relationship between the change in temperature and the rate of enzyme activity in a reaction and not the practical skills that is part of a lesson covering specification point 2.1.4 (d) [ii]
The use of the PCR to amplify DNA (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The use of the PCR to amplify DNA (Edexcel Int. A-level Biology)

(0)
This lesson explains how the polymerase chain reaction (PCR) is used to amplify DNA. The PowerPoint has been designed to cover point 6.17 of the Edexcel International A-level Biology specification. A quick quiz competition is used to introduce the PCR abbreviation before students are encouraged to discuss the identity of the enzyme involved and to recall the action of this enzyme. Students will learn that this reaction involves cyclical heating and cooling to a range of temperatures so the next part of this lesson looks at these particular temperatures so the important parts of each of the steps can be understood. Time is taken to examine the key points in detail, such as the specific DNA polymerase that is used and how it is not denatured at the high temperature as well as the involvement of the primers.
Topic 9: Control systems (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 9: Control systems (Edexcel A-level Biology B)

19 Resources
This bundle contains 19 lessons which are engaging and highly detailed in order to cover the difficult content as set out in topic 9 (Control systems) of the Edexcel A-level Biology B specification. The lesson PowerPoints and accompanying resources contain a wide variety of tasks which cover the following specification points: Homeostasis is the maintenance of a state of dynamic equilibrium The importance of maintaining pH, temperature and water potential in the body The meaning of negative feedback and positive feedback control The principles of hormone production by endocrine glands The two main modes of action in hormones The organisation of the mammalian nervous system into the CNS and PNS The structure of the spinal cord The location and functions of the main parts of the brain The division of the autonomic nervous system into the sympathetic and parasympathetic systems The transport of sodium and potassium ions in a resting potential The formation of an action potential and the propagation along an axon Saltatory conduction The function of synapses The formation and effects of excitatory and inhibitory postsynaptic potentials The structure of the human retina The role of rhodopsin The distribution of rods and cone cells The control of heart rate by the autonomic nervous system The gross and microscopic structure of the kidney The production of urea in the liver and its removal from the blood by ultrafiltration Selective reabsorption in the proximal tubule Water reabsorption in the loop of Henle Control of mammalian plasma concentration The differences between ectotherms and endotherms The regulation of temperature by endotherms If you would like to sample the quality of this lesson bundle, then download the homeostasis, mammalian nervous system, resting and action potentials and the formation of urea and ultrafiltration lessons as these have been uploaded for free.
Distribution in a habitat (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Distribution in a habitat (Edexcel Int. A-level Biology)

(0)
This lesson describes the meaning of ecological terms and explains how biotic and abiotic factors control the distribution of organisms in a habitat. The engaging PowerPoint and accompanying resources have been designed to cover points 5.11, 5.12 and 5.13 in unit 4 of the Edexcel International A-level Biology (Salters Nuffield) specification and therefore cover the biological definitions of ecosystem, community, population and habitat. A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller: community ecosystem abiotic factor photosynthesis respiratory substrate biomass calorimetry distribution niche The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Links are made to photosynthesis and net primary productivity as these will be met later in topic 5 as well as challenging their prior knowledge of adaptations, heterozygosity index classification and biological molecules. The final part of the lesson uses an exam-style question to get the students to recognise that biotic and abiotic factors control the distribution of organisms in a habitat and to recall the concept of niche.
Topic 5: Homeostasis and response (AQA GCSE Biology)
GJHeducationGJHeducation

Topic 5: Homeostasis and response (AQA GCSE Biology)

12 Resources
This bundle contains 12 lesson PowerPoints and their accompanying resources, and all of them have been planned at length to cover the GCSE content of topic 5 of the AQA GCSE Biology specification, whilst engaging and motivating the students with a wide range of tasks. These tasks include exam-style questions with answers included in the PowerPoint, guided discussion points and quick quiz rounds which are used to introduce key terms and values in a fun and memorable way whilst instilling some competition The following Homeostasis and response specification points are covered by the lessons in this bundle: Homeostasis* Structure and function of the human nervous system The brain The eye Control of body temperature Human endocrine system Control of blood glucose concentration Maintaining water and nitrogen balance in the body* Hormones in human reproduction Contraception* The use of hormones to treat infertility Negative feedback If you would like to sample the quality of lessons in this bundle, then download the lessons indicated with an asterisk as they have been uploaded for free
Digestion in mammals (AQA A-level Biology)
GJHeducationGJHeducation

Digestion in mammals (AQA A-level Biology)

(0)
This lesson describes how large molecules are hydrolysed to smaller molecules by the enzymes produced by the digestive system in mammals. The detailed PowerPoint and accompanying worksheets are part of the 1st lesson in a series of 2 which have been designed to cover the content of point 3.3 of the AQA A-level Biology specification and this lesson includes descriptions of the action of amylase, disaccharidases, lipase, endopeptidases, exopeptidases and dipeptidases. The lesson has been designed to walk the students through the functions of the digestive system at each point of the digestive tract up until the duodenum and focuses on the action of the enzymes produced in the mouth, stomach and small intestine and by the accessory organs of the system. Time is taken to describe and explain key details, such as the fact that endopeptidases cleave peptide bonds within the molecules, meaning that they cannot break down proteins into monomers. The lesson is filled with exam-style questions which will develop their understanding of the current topic as well as checking on their knowledge of related topics which have been previously-covered such as the structure of the biological molecules and qualitative tests. In addition to the detailed content and regular questioning, the lesson PowerPoint contains guided discussion periods and two quick quiz competitions which introduce a key term and a key value in a fun and memorable way This lesson has been specifically planned to prepare the students for the very next lesson where the mechanisms for the absorption of the products of digestion are described.
The PATHOGENS that cause communicable diseases (OCR A-level Biology)
GJHeducationGJHeducation

The PATHOGENS that cause communicable diseases (OCR A-level Biology)

(0)
This lesson describes the different types of pathogens that can cause communicable diseases in plants and animals. The PowerPoint and accompanying worksheets have been primarily designed to cover point 4.1.1 (a) of the OCR A-level Biology specification but as this is the first lesson in module 4, it has been specifically planned to make links to upcoming topics such as phagocytosis, vaccinations and classification. viruses - HIV/AIDS, influenza, TMV bacteria - TB, cholera, ring rot protoctista - malaria fungi - athlete’s foot, black sigatoka, ringworm, The diseases shown above are covered by the detailed content of this lesson and the differing mechanisms of action of the four types of pathogens are discussed and considered throughout. For example, time is taken to describe how HIV uses a glycoprotein to attach to T helper cells whilst toxins released by bacteria damage the host tissue and the Plasmodium parasite is transmitted from one host to another by a vector to cause malaria. The accompanying worksheets contain a range of exam-style questions, including a mathematical calculation, and mark schemes are embedded into the PowerPoint to allow students to immediately assess their understanding.
Topic 8: Coordination, Response and Gene Technology (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Topic 8: Coordination, Response and Gene Technology (Edexcel Int. A-level Biology)

8 Resources
This bundle contains 8 fully-resourced lessons which have been designed to cover the following content in topic 8 of the Edexcel International A-level Biology specification: 8.1: Know the structure and function of sensory, relay and motor neurones 8.2: Understand how the nervous system of organisms can cause effectors to respond to a stimulus 8.4: Understand how a nerve impulse is conducted along an axon 8.5: Understand the role of myelination in saltatory conduction 8.6 (i): Know the structure and function of synapses in nerve impulse transmission 8.6 (ii): Understand how the pupil dilates and contracts 8.8: Understand how the nervous system of organisms can detect stimuli with reference to rods in the retina of mammals 8.10: Know that the mammalian nervous system consists of the central and peripheral nervous systems 8.13: Understand how coordination in animals is brought about through nervous and hormonal control 8.18: Understand how recombinant DNA can be produced 8.19: Understand how recombinant DNA can be inserted into other cells Each of the lessons contains a wide range of activities, which include exam-style questions, guided discussion periods and quick quiz competitions, and these will motivate the students whilst the difficult A-level content is covered If you would like to see the quality of lessons included in this bundle then download the pupil reflex, saltatory conduction and nervous and hormonal control lessons as these have been uploaded for free
A2 unit 3, topic 7: Homeostasis and the kidney (WJEC A-level Biology)
GJHeducationGJHeducation

A2 unit 3, topic 7: Homeostasis and the kidney (WJEC A-level Biology)

5 Resources
This bundle contains 5 fully-resourced lessons which have been designed to cover the following points in topic 7 of A2 unit 3 of the WJEC A-level Biology specification: (a): The concept of homeostasis and its importance in maintaining the body in a state of dynamic equilibrium (b): The roles of negative and positive feedback ©: The structure of the mammalian kidney and the nephron (e): The adaptations of the cells of the proximal tubule for reabsorption (f & g): The role of the posterior pituitary gland and ADH in homeostatic balance (h): The effects of kidney failure and its potential treatments Each lesson is filled with a wide variety of tasks which will engage and motivate the students whilst covering the A-level Biology content detailed above If you would like to sample the quality of the lessons in this bundle, then download the structure of the mammalian kidney and the role of ADH lessons as these have been uploaded for free
Structure of DNA (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Structure of DNA (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes the structure of DNA as a double-stranded polymer coiled into a double helix and focuses on nucleotides as the monomers. The PowerPoint and accompanying resources have been designed to cover the detail of point 3.4 of the Edexcel GCSE Biology & Combined Science specifications. The lesson begins with a reveal of the acronym DNA and students will learn that this stands for deoxyribonucleic acid. There is a focus on the use and understanding of key terminology throughout the lesson so time is taken to look at the meanings of the prefixes poly and mono as well as the suffix -mer. This leads into the description of DNA as a polymer which is made up of many monomers known as nucleotides. Students will be introduced to the three components of a DNA nucleotide and will learn that four different bases can be attached to the sugar. An observational task is used to get them to recognise that DNA consists of two strands and that complementary bases are joined by hydrogen bonds. Understanding checks are interspersed throughout the lesson along with mark schemes so that students can assess their progress
Topic 7.4 AQA A-level Biology (Populations in ecosystems)
GJHeducationGJHeducation

Topic 7.4 AQA A-level Biology (Populations in ecosystems)

4 Resources
This bundle contains 4 complete lessons, with each one fully-resourced and consisting of a variety of tasks. These tasks include exam-based questions, understanding and prior knowledge checks and quiz rounds which will engage the students whilst covering the content of topic 7.4 in detail. If you would like to sample the quality of these lessons, you could download the conservation of habitats lesson as this has been uploaded for free
Autosomal linkage (AQA A-level Biology)
GJHeducationGJHeducation

Autosomal linkage (AQA A-level Biology)

(1)
This clear and concise lesson explains how the inheritance of two or more genes that have loci on the same autosome demonstrates autosomal linkage. The engaging PowerPoint and associated resource have been designed to cover the part of point 7.1 of the AQA A-level Biology specification which states that students should be able to use fully-labelled genetic diagrams to interpret the results of crosses involving autosomal linkage. This is a topic which can cause confusion for students so time was taken in the design to split the concept into small chunks. There is a clear focus on how the number of original phenotypes and recombinants can be used to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the chiasma determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions. The main task of the lesson acts as an understanding check where students are challenged to analyse a set of results involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene to determine whether they have loci on the same chromosome and if so, how close their loci would appear to be. This lesson has been written to tie in with the other 6 lessons from topic 7.1 (Inheritance) and these have also been uploaded
Species and taxonomy (AQA A-level Biology)
GJHeducationGJHeducation

Species and taxonomy (AQA A-level Biology)

(1)
This engaging lesson covers the biological classification of a species, phylogenetic classification and the use of the binomial naming system. The PowerPoint and accompanying resources have been designed to cover point 4.5 of the AQA A-level Biology specification which is titled species and taxonomy. The lesson begins by looking at the meaning of a population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a horse and a donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Although the art of courting might be lost on humans in the modern world, the marabou stork is used as an example to show how courtship behaviour is an essential precursor to successful mating in most organisms. Students are encouraged to discuss other examples of courtship behaviour, such as the release of pheromones and birdsong, so that their knowledge and understanding is broad. Moving forwards, students will learn that species is the lowest taxon in the modern-day classification hierarchy. A quiz runs throughout the lesson and this particular round will engage the students whilst they learn the names of the other 7 taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system. The final part of the lesson briefly looks at how advances in genome sequencing and the comparison of common biological molecules has allowed the relationships between organisms to be clarified. This is a detailed lesson and it is estimated that it will take around 2 hours of A-level teaching time to cover the content and therefore this specification point.
DNA and GENES (AQA A-level Biology)
GJHeducationGJHeducation

DNA and GENES (AQA A-level Biology)

(1)
This fully-resourced lesson looks at the structure of genes and explores their role as a base sequence on DNA that codes for the amino acid sequence of a polypeptide. Both the PowerPoint and accompanying resource have been designed to cover the second part of point 4.1 of the AQA A-level Biology specification and has been written to specifically tie in with the previous lesson on DNA in prokaryotes and eukaryotes. The lesson begins with a prior knowledge check as the students have to recognise the key term chromosome from a description involving DNA and histones. This allows genes, as sections of a chromosome, to be introduced and the first of a number of quiz rounds is then used to get the students to meet the term locus so that they can understand how each gene has a specific location on a chromosome. Whenever possible, opportunities are taken to make links to the other parts of the AQA specification and this is utilised here as students are reminded that alternative versions of a gene (alleles) can be found at the locus. Moving forwards, students will learn that 3 DNA bases is a triplet and that each triplet codes for a specific amino acid. At this point, the genetic code is introduced and students are challenged to explain how the code contains 64 different triplets. By comparing this number against the number of different amino acids in proteins, students will see how each amino acid is encoded for by more than one triplet and how this explains the degenerate nature of the genetic code. Again, an opportunity is taken to link to gene mutations. Finally, the students are told that most of the nuclear DNA in a eukaryote doesn’t code for a polypetptide and that even within a gene, there are coding and non-coding regions known as exons and introns respectively. The last section of the lesson uses a quiz round to check on all of the key terms which have been met in the two lessons on DNA, genes and chromosomes.