Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic 9: Control systems (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 9: Control systems (Edexcel A-level Biology B)

15 Resources
This bundle contains 15 lessons which are engaging and highly detailed in order to cover the difficult content as set out in topic 9 (Control systems) of the Edexcel A-level Biology B specification. The lesson PowerPoints and accompanying resources contain a wide variety of tasks which cover the following specification points: Homeostasis is the maintenance of a state of dynamic equilibrium The importance of maintaining pH, temperature and water potential in the body The meaning of negative feedback and positive feedback control The principles of hormone production by endocrine glands The two main modes of action in hormones The division of the autonomic nervous system into the sympathetic and parasympathetic systems The transport of sodium and potassium ions in a resting potential The formation of an action potential and the propagation along an axon Saltatory conduction The function of synapses The formation and effects of excitatory and inhibitory postsynaptic potentials The structure of the human retina The role of rhodopsin The distribution of rods and cone cells The control of heart rate by the autonomic nervous system The gross and microscopic structure of the kidney The production of urea in the liver and its removal from the blood by ultrafiltration Selective reabsorption in the proximal tubule Control of mammalian plasma concentration The differences between ectotherms and endotherms The regulation of temperature by endotherms If you would like to sample the quality of this lesson bundle, then download the homeostasis, resting and action potentials and the formation of urea and ultrafiltration lessons as these have been uploaded for free.
Topic 5: On the wild side (Edexcel A-level Biology A)
GJHeducationGJHeducation

Topic 5: On the wild side (Edexcel A-level Biology A)

10 Resources
As the first topic to be taught at the start at the second year of the Pearson Edexcel A-level Biology A (Salters Nuffield) course, topic 5 is very important and the content includes the key reaction of photosynthesis. All 10 lessons included in this bundle are highly detailed and have been filled with a wide variety of tasks which will engage and motivate the students whilst covering the following specification points: Understand the terms ecosystem, community, population and habitat The numbers and distribution of organisms in a habitat are controlled by biotic and abiotic factors The concept of niche The stages of succession from colonisation to climax community The overall reaction of photosynthesis The phosphorylation of ADP and the hydrolysis of ATP The light-dependent reactions of photosynthesis The light-independent reactions of photosynthesis The products of the Calvin cycle The structure of the chloroplasts and the role of this organelle in photosynthesis Be able to calculate net primary productivity Know the relationship between NPP, GPP and R The effect of temperature on the rate of enzyme activity Isolation reduces gene flow and leads to allopatric and sympatric speciation If you would like to sample the quality of the lessons in this bundle, then download the light-independent reactions and isolation and speciation lessons as these have been uploaded for free
Temperature & enzyme activity (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Temperature & enzyme activity (Edexcel Int. A-level Biology)

(0)
This lesson explains the effects of temperature on the rate of enzyme activity and describes how to calculate the temperature coefficient. The PowerPoint and the accompanying resources have been designed to cover point 5.21 of the Edexcel International A-level Biology specification and this lesson has been specifically planned to tie in with a lesson in topic 2 where the roles and mechanism of action of enzymes were introduced. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these lessons in modules 6 and 5. Moving forwards, the next part of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and are challenged to complete the graph to show how the rate of reaction decreases to 0 when the enzyme has denatured. The final part of the lesson introduces the Q10 temperature coefficient and students are challenged to apply this formula to calculate the value for a chemical reaction and a metabolic reaction to determine that enzyme-catalysed reactions have higher rates of reaction
Sensory, relay and motor neurones (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Sensory, relay and motor neurones (Edexcel Int. A-level Biology)

(0)
This lesson describes the structure and functions of the sensory, relay and motor neurones. The engaging PowerPoint and accompanying resources have been designed to cover point 8.1 of the Edexcel International A-level Biology specification but also considers the organisation of the nervous system into the central and peripheral nervous systems and therefore also covers point 8.10. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The students will be able to compare these neurones based on their function but time is taken to distinguish between them based on their structural features. The importance of the myelin sheath for the sensory and motor neurones is briefly discussed and students are introduced to key terminology such as saltatory conduction and Schwann cells so they are prepared for the upcoming lesson covering specification point 8.5. The final task involves a comparison between the three neurones to check that the students have understood the structures and functions of the neurones. Throughout the lesson, the organisation of the nervous system is discussed and students are provided with additional knowledge such as the differences between somatic and autonomic motor neurones.
Rod cells and the detection of stimuli (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Rod cells and the detection of stimuli (Edexcel Int. A-level Biology)

(0)
This lesson describes how the nervous system detects stimuli, focusing on the detection of light by the rods in the the retina of mammals. The PowerPoint has been designed to cover the content of specification point 8.8 of the Edexcel International A-level Biology specification and includes descriptions of the roles of rhodopsin, opsin, retinal, sodium ions, cation channels and hyperpolarisation in the formation of action potentials in the optic neurones. The lesson begins by using a quiz to get the students to recognise the range of stimuli which can be detected by receptors. This leads into a task where the students have to form 4 sentences to detail the stimuli which are detected by certain receptors and the energy conversion that happen as a result. Students will be introduced to the idea of a transducer and learn that receptors always convert to electrical energy which is the generator potential. It is likely that students will be aware that the human retina contains rod and cone cells, so the next part of the lesson builds on that knowledge and adds the detail needed at this level. Students will discover that the optical pigment in rod cells is rhodopsin and that the bleaching of this into retinal and opsin results in a cascade of events that allows an action potential to be initiated along the optic nerve. Time is taken to go through the events that occur in the dark and then the students are challenged to use this as a guide when explaining how the events differ in the light. Key terms like depolarisation and hyperpolarisation, that were met earlier in topic 8, are used to explain the changes in membrane potential and the resulting effect on the connection with the bipolar and ganglion cells is then described. The remainder of the lesson focuses on the Pacinian corpuscle and describes how this responds to pressure on the skin, resulting in the opening of the sodium channels and the flow of sodium ions into the neurone to cause depolarisation
Topics 5 & 6: The mitotic cell cycle, nucleic acids & protein synthesis (CIE A-level Biology)
GJHeducationGJHeducation

Topics 5 & 6: The mitotic cell cycle, nucleic acids & protein synthesis (CIE A-level Biology)

11 Resources
This lesson bundle contains 11 detailed lesson PowerPoints, which along with their accompanying resources, have been intricately planned to cover the majority of the content of topics 5 and 6 of the CIE A-level Biology specification. The cell cycle, mitosis and protein synthesis are topics that students tend to find difficult and therefore the planning focused on the inclusion of a wide range of tasks that would not only promote the retention of important information and secure knowledge but also maintain motivation and engagement. The tasks include exam-style questions with displayed mark schemes which challenge the students on their current understanding and prior knowledge, guided discussion points and quick quiz competitions which introduce key terms and values. The following specification points are covered by these 11 lessons: Topic 5 The structure of a chromosome, limited to DNA, histone proteins, chromatids, centromere and telomere The importance of mitosis in producing genetically identical cells, growth, cell replacement, repair of tissues and asexual reproduction The cell cycle, including theh G and S phases of interphase, mitosis and cytokinesis The behaviour of chromosomes in animal and plant cells in the mitotic cell cycle Topic 6 The structure of nucleotides, including ATP The structure of DNA and RNA The semi-conservative replication of DNA during interphase A polypeptide is coded for by a gene Gene mutations can cause changes to the polypeptide sequence The information in DNA is used during transcription and translation to construct polypeptides
Three domain classification (OCR A-level Biology)
GJHeducationGJHeducation

Three domain classification (OCR A-level Biology)

(0)
This lesson describes how the recent use of similarities in biological molecules and other genetic evidence has led to new classification systems. The PowerPoint and accompanying resources have been designed to cover point 4.2.2 [c] (i) of the OCR A-level Biology A specification and focuses on the introduction of the three-domain system following Carl Woese’s detailed study of the ribosomal RNA gene. The lesson begins with an introduction of Woese and goes on to describe how he is most famous for his definition of the Archaea as a new domain of life. Students were introduced to domains and the other classification taxa in a previous lesson, so their recall of this knowledge is continually tested and built upon as details are added. Students will discover the key differences between Archaea and Bacteria that led to the splitting of the prokaryotae kingdom and the addition of this higher classification rank. Moving forwards, the rest of the lesson considers other molecules that can be compared between species for classification purposes and the primary structure of cytochrome is described and discussed. At this point in the lesson, the students are also tested on their knowledge of the nature of the genetic code and have to explain how mutations to DNA can also be used for comparative purposes.
Fick's Law & gas exchange surfaces (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Fick's Law & gas exchange surfaces (Edexcel Int. A-level Biology)

(0)
This lesson describes how Fick’s law of diffusion is governed by the three main properties of gas exchange surfaces in living organisms. The PowerPoint and accompanying worksheets have been designed to cover points 2.1 (i & ii) of the Edexcel International A-level Biology specification and there is a particular focus on the relationship between the size of an organism or structure and its surface to volume ratio. Adolf Fick is briefly introduced at the start of the lesson and the students will learn that his law of diffusion governs the diffusion of a gas across a membrane and is dependent on three properties. The students are likely to know that surface area is one of these properties but although they may have been introduced to the surface area to volume ratio at iGCSE, their understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of this ratio in order to increase the relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson to walk them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of an organism and this leads into the next part of the lesson, where the adaptations of a human to increase the ratio at the gas exchange surface is covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. The remainder of the lesson introduces concentration difference and thickness of membrane as the other two properties in Fick’s law of diffusion and students are reminded that the maintenance of a steep concentration gradient and a reduction in the diffusion distance are critical for this transport mechanism. This lesson has been specifically planned to prepare students for the next lesson which describes how the structure of the mammalian lung is adapted for rapid gas exchange (specification point 2.1 [iii])
International & local conservation agreements (OCR A-level Biology A)
GJHeducationGJHeducation

International & local conservation agreements (OCR A-level Biology A)

(0)
This lesson describes the international and local conservation agreements that are made to protect species and habitats. The detailed PowerPoint and accompanying worksheets have been designed to cover point 4.2.1 (i) of the OCR A-level Biology A specification and includes details of CITES, CBD and CSS. Many hours of research have gone into the planning of this lesson to ensure that a range of interesting biological examples are included, with the aim of fully engaging the students in the material to increase its relevance. Beginning with the Convention on International Trade in Endangered Species of Wild Fauna and Flora, the students will learn that this was first agreed in 1973 and that 35000 species are currently found in appendix I, II or III. Time is taken to go through the meaning of each appendix and then the following animal and plant species are used to explain the finer details of the agreement: Tree pangolin, eastern black rhino for CITES appendix I Darwin’s orchid for CITES appendix II Four-horned antelope for CITES appendix III Exam-style questions are used to check on their understanding of the current topic as well as to challenge their knowledge of previously-covered topics such as the functions of keratin, when considering the structure of the rhino horn. Each of these questions has its own markscheme which is embedded in the PowerPoint and this allows the students to constantly assess their progress. Moving forwards, the Rio Convention on Biological Diversity is introduced and students will understand that this is a key document regarding sustainable development. The final part of the lesson considers local conservation agreements, focusing on the Countryside Stewardship Scheme and its replacement, the Environmental Stewardship Scheme. Students are told that farmers, woodland owners, foresters and land managers can apply for funding for a range of options including hedgerow management, low input grassland, buffer strips, management plans and soil protection options. The importance of the hedgerows for multiple species is discussed, and again a real-life example is used with bats to increase the likelihood of retention. The last task challenges them to use their overall knowledge of module 4.2.1 (biodiversity) to explain why buffer strips consisting of multiple types of vegetation are used and to explain why these could help when a farmer is using continuous monoculture.
Spearman rank correlation coefficient (Edexcel A-level Biology B)
GJHeducationGJHeducation

Spearman rank correlation coefficient (Edexcel A-level Biology B)

(0)
This lesson describes how to analyse data using the Spearman rank correlation coefficient. The PowerPoint and accompanying exam-style question are part of the second lesson in a series of 2 lessons which have been designed to cover point 10.1 (vi) of the Edexcel A-level Biology B specification. The first lesson in this series described how to analyse data using the standard deviation and the t-test As with the previous lesson, a step by step guide is used to walk the students through the use of the formula to generate the rank coefficient and to determine whether there is a positive correlation, no correlation or a negative correlation. The students are also reminded of the null hypothesis and will be shown how to accept or reject this hypothesis and to determine significance. The students will work through an example with the class and then are given the opportunity to apply their newly-acquired knowledge to an exam-style question. The mark scheme is displayed on the PowerPoint so they can assess their understanding
Topic B5: Health, disease and development of medicines (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic B5: Health, disease and development of medicines (Edexcel GCSE Combined Science)

7 Resources
This bundle of 7 lessons covers a lot of the content in Topic B5 (Health, disease and development of medicines) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: Health The difference between communicable and non-communicable diseases Pathogens Common infections The spread of diseases and the prevention The spread of STIs The physical and chemical defences of the human body The use of antibiotics Developing new medicines Non-communicable diseases Treating cardiovascular disease All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
The Menstrual cycle
GJHeducationGJHeducation

The Menstrual cycle

(0)
This is an engaging and discussion filled lesson which looks at the menstrual cycle and specifically focuses on the interaction of the four hormones in the cycle. This lesson has been designed for GCSE students (ages 14 - 16 in the UK) but is suitable for older students who want a recap on this topic before going into more depth. In order to understand the cycle, it is critical that students know the roles that each of the hormones perform and also can describe how one hormone affects another. The main task of the lesson goes through the steps in the cycle, but challenges the students to use their prior knowledge of the endocrine system to add in the name of the correct hormone. At appropriate points of the lesson, time is taken to relate this topic to others in Biology, such as the use of oestrogen in the contraceptive pill and also hCG as the hormone which is detected by pregnancy tests. Students will know key landmarks in the 28 day cycle and be able to relate this back to the hormones. There are progress checks throughout the lesson but the final part of the lesson involves three understanding checks where students are challenged to apply their knowledge.
IVF
GJHeducationGJHeducation

IVF

(1)
This is a fully-resourced lesson which looks at how IVF is used a treatment for infertility and considers the arguments for and against this process. The lesson includes an engaging, informative and discussion provoking lesson presentation and a pair of differentiated worksheets which challenge the mathematical skills of the students when looking at the % chance of multiple births from IVF. The lesson begins by getting the students to recognise the phrase “test tube baby” and then to link this to IVF. Extra pieces of interesting information are given throughout the lesson, such as the introduction of Louise Brown at this point. A step by step guide is used to go through the key steps in the process. Questions are continually posed to the students which get them to think and attempt to verbalise their answers such as when they are questioned whether men are needed for this process. There is a focus on key terminology throughout, such as haploid and zygote and genetic screening. Students will learn that multiple births are much more common in IVF births than from natural conception and then they will be asked to manipulate data in a mathematical task with some figures from a maternity ward. As these questions are quite difficult, this worksheet has been differentiated so that all students can access the learning. Although this has been written for GCSE students, it is suitable for use with older students.
Topic B3: Organism-level systems (OCR Gateway A GCSE Biology)
GJHeducationGJHeducation

Topic B3: Organism-level systems (OCR Gateway A GCSE Biology)

13 Resources
This bundle of 15 lessons covers the majority of the content in Topic B3 (Organism level systems) of the OCR Gateway A GCSE Biology specification. The topics covered within these lessons include: The nervous system The eye Hormones and the endocrine system Adrenaline Negative feedback loops Thyroid gland and thyroxine The menstrual cycle Contraception Using hormones to treat infertility Plant hormones Homeostasis Controlling body temperature Controlling blood glucose Diabetes Inside the kidney All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Diabetes mellitus Type I and II
GJHeducationGJHeducation

Diabetes mellitus Type I and II

(0)
This is a fast-paced lesson which uses a range of tasks and quick competitions to compare the diagnosis, symptoms and treatment of Diabetes mellitus Type I and II. Students are continually challenged throughout the lesson to build and deepen their knowledge of these conditions and consider how they can be controlled through hormone injections or lifestyle changes. Clear links are made to related topics such as auto-immune diseases and the endocrine system and progress checks have been written into the lesson to allow students to assess their understanding of all of these topics. The final part of the lesson involves the students writing a letter to an individual who has type II, explaining how this diagnosis was done, giving details of the condition and recommending lifestyle changes. This task is differentiated so that students who are finding it difficult can still access the learning. This lesson has been written for A-level students. If you are looking for a lesson for younger students on this topic, then my other upload “Diabetes Type I and II” will be more suitable.
OCR Gateway GCSE Biology A Paper 1 REVISION (Topics B1 - B3)
GJHeducationGJHeducation

OCR Gateway GCSE Biology A Paper 1 REVISION (Topics B1 - B3)

(0)
This is a highly-detailed revision resource which has been designed to be used over a number of lessons and allows teachers to dip in and out of the material as fits to the requirements of their classes and students. The resource consists of an engaging and detailed powerpoint (148 slides) and worksheets which have been differentiated to allow students of differing abilities to be challenged whilst accessing the work. The lesson consists of a wide range of activities which will engage and motivate the students and includes exam questions, quiz competitions and quick tasks and mathematical skills are challenged throughout. The lesson has been designed to cover as many of the sub-topics within topics 1, 2 and 3 of the OCR Gateway GCSE Biology A specification but the following sub-topics have been given particular attention: Topic B1: Cell-level systems Eukaryotic and prokaryotic cells Respiration Functions of the organelles of animal and plant cells Microscopy and calculating size Topic B2: Scaling up The functions of the components of blood Specialised cells Osmosis Mitosis and the cell cycle The heart and blood vessels Topic B3: Organism-level systems The nervous system The structures and functions of the eye IVF This revision resource can be used in the lead up to mocks or the actual GCSE exams and due to its size, it could be repeatably used to ensure that students develop a deep understanding of these topics.
Edexcel A-Level Biology Topic 1 REVISION (Lifestyle, Health and Risk)
GJHeducationGJHeducation

Edexcel A-Level Biology Topic 1 REVISION (Lifestyle, Health and Risk)

(1)
This is a fully-resourced REVISION lesson that consists of an engaging PowerPoint (87 slides) and associated worksheets that challenge the students on their knowledge of the content of Topic 1 (Lifestyle, Health and Risk) of the Edexcel A-Level Biology A (Salters-Nuffield) specification. A wide range of activities have been written into the lesson to maintain motivation and these tasks include exam questions (with answers), understanding checks, differentiated tasks and quiz competitions. The lesson has been designed to include as much which of the content from topic 1, but the following specification points have been given particular attention: The differences between monosaccharides, disaccharides and polysaccharides, including glycogen and starch (amylose and amylopectin). Be able to relate the structures of monosaccharides, disaccharides and polysaccharides to their roles in providing and storing energy Know how monosaccharides join to form disaccharides (sucrose, lactose and maltose) and polysaccharides (glycogen and amylose) through condensation reactions forming glycosidic bonds, and how these can be split through hydrolysis reactions. Know how a triglyceride is synthesised by the formation of ester bonds during condensation reactions between glycerol and three fatty acids. Understand the course of events that leads to atherosclerosis Know how factors such as genetics, diet, age, gender, high blood pressure, smoking and inactivity increase the risk of cardiovascular disease Know the benefits and risks of treatments for CVD Understand the blood-clotting process and its role in CVD Understand how the structures of arteries and veins) relate to their functions. Understand the importance of water as a solvent in transport, including its dipole nature. This lesson can be used at numerous points over the duration of the course, as an end of topic revision aid, in the lead up to the mocks or in the lead up to the actual A-level exams.
OCR A-level Biology Module 4 REVISION (Biodiversity, evolution and disease)
GJHeducationGJHeducation

OCR A-level Biology Module 4 REVISION (Biodiversity, evolution and disease)

(1)
A fully resourced revision lesson which uses a range of exam questions (with explained answers), quick tasks and quiz competitions to enable the students to assess their understanding of the topics found within module 4 (Biodiversity, evolution and disease) of the OCR A-level Biology specification. The topics tested within this lesson include: Communicable diseases, biodiversity, classification and evolution Student will enjoy the range of tasks and quiz rounds whilst crucially being able to recognise any areas which require further attention
Sampling techniques
GJHeducationGJHeducation

Sampling techniques

(1)
A fully-resourced lesson that looks at the different sampling methods that can be used to estimate the populations of animals and plants in a habitat and to analyse how their distribution is affected, The lesson includes a detailed and engaging lesson presentation (56 slides) and differentiated worksheets so that students of different abilities are challenged and can access the work. The lesson begins by looking at the use of a quadrat to estimate the population of plants in a habitat. There is a focus on the mathematical calculations associated with the method and students are given hints and worked examples so that any common misconceptions are addressed. Moving forwards, students are introduced to the capture-mark-recapture technique to sample animals. The rest of the lesson looks at alternative pieces of apparatus, such as the sweep net, and discusses situations when these would be used. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but is appropriate for both younger students who are learning about ecology and also for A-level students who need a recap on this topic.
Osmosis
GJHeducationGJHeducation

Osmosis

(0)
A fully-resourced lesson that looks at the topic of osmosis and how the movement of water between a cell and the solution can affect the appearance of an animal and a plant cell. This lesson includes a detailed and engaging lesson presentation (42 slides) and differentiated worksheets that include exam questions that can be set as homework. There is a lot of key terminology associated with this topic and time is taken to ensure that students understand the meaning of each of these terms before moving forwards. Students are introduced to the different types of solutions and then a step-by-step guide is used to show them how to compare the water potential of the solution and the cell and then how this will determine which was water moves. The main task is differentiated so that students are challenged and can access the work. This lesson has been designed for GCSE students (14 - 16 year olds in the UK) but is also suitable for A-level students