Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
OCR Gateway A GCSE Combined Science REVISION LESSONS
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science REVISION LESSONS

18 Resources
This bundle of 18 lessons uses a range of exam questions, tasks, activities and quiz competitions to engage students whilst they assess their knowledge of the topics in modules B1-6, C1-6 and P1-6 of the OCR Gateway A GCSE Combined Science specification. All of the lessons are fully resourced to take away that worry about how to get students to effectively revise in the lead up to assessments.
AQA GCSE Biology REVISION LESSONS (Topics 1 - 7)
GJHeducationGJHeducation

AQA GCSE Biology REVISION LESSONS (Topics 1 - 7)

9 Resources
This bundle of 9 engaging and motivating lesson presentations and associated worksheets uses a combination of exam questions, differentiated tasks and quiz competitions to test the students on their knowledge of all of the topics found within the AQA GCSE Biology specification. The knowledge of the content of the following topics is tested in these lessons: Topic 1: Cell Biology Topic 2: Organisation Topic 3: Infection and response Topic 4: Bioenergetics Topic 5: Homeostasis and response Topic 6: Inheritance, variation and evolution Topic 7: Ecology In addition, the bundle contains a Paper 1 and Paper 2 revision lesson where content from all of the topics are covered in these very detailed resources Students will be motivated and engaged by the range of activities whilst they assess which areas need their further attention before the exams. These revision lessons can be used at the end of a topic, before the mock exams or before the actual GCSE terminal exams.
Topic B5: Health, disease and development of medicines (Edexcel GCSE Biology)
GJHeducationGJHeducation

Topic B5: Health, disease and development of medicines (Edexcel GCSE Biology)

10 Resources
This bundle of 10 lessons covers a lot of the content in Topic B5 (Health, disease and development of medicines) of the Edexcel GCSE Biology specification. The topics covered within these lessons include: Health The difference between communicable and non-communicable diseases Pathogens Common infections The spread of diseases and the prevention The spread of STIs Plant defences Identification of plant diseases The physical and chemical defences of the human body The use of antibiotics Developing new medicines Monoclonal antibodies Non-communicable diseases Treating cardiovascular disease All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B6: Plant structures and their functions (Edexcel GCSE Biology)
GJHeducationGJHeducation

Topic B6: Plant structures and their functions (Edexcel GCSE Biology)

5 Resources
This bundle of 5 lessons covers a lot of the content in Topic B6 (Plant structures and their functions) of the Edexcel GCSE Biology specification. The topics covered within these lessons include: The photosynthesis reaction The limiting factors of photosynthesis The structure and function of the xylem and phloem Transporting water and minerals by transpiration Factors affecting the rate of transpiration The role of plant hormones in the control and coordination of growth and development All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Sensory and motor neurones
GJHeducationGJHeducation

Sensory and motor neurones

(0)
This is a fast-paced lesson that explores the structural differences (and similarities) between sensory and motor neurones. The lesson uses a range of tasks, progress checks and quick competitions to enable the students to recognise how these neurones differ in terms of the cell body, axon and dendron. Students will also understand that both neurones are myelinated which allows saltatory conduction to occur. Relay neurones are briefly discussed during the final section of the lesson. This lesson has primarily been designed for A-level students but can be used with the content means that it is suitable for use with GCSE students too who are studying the nervous system.
Topic B3.2: Coordination and control - the endocrine system (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic B3.2: Coordination and control - the endocrine system (OCR Gateway A GCSE Combined Science)

6 Resources
This bundle of 7 lessons covers all of the content in the sub-topic B3.2 (Coordination and control - the endocrine system) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include: Describe hormonal coordination by the human endocrine system Explain the roles of adrenaline and thyroxine in the body Describe the role of hormones in human reproduction (the menstrual cycle) The hormonal and non-hormonal methods of contraception Explain the use of hormones to treat infertility All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B2.2: The challenges of size (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic B2.2: The challenges of size (OCR Gateway A GCSE Combined Science)

7 Resources
This bundle of 7 lessons covers the majority of the content in the sub-topic B2.2(The challenges of size) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: Explain the need for exchange surfaces and a transport system in a multicellular organism due to the low SA:V ratio The exchange of oxygen and carbon dioxide with the blood at the alveoli Explain how the structure of the heart and the blood vessels are adapted to their function Explain how the red blood cells and plasma are adapted to their transport function in the blood Describe the processes of transpiration and translocation Explain how the structure of the xylem and phloem are adapted to their functions in the plant Explain the effects of a variety of factors on the rate of water uptake Describe how a simple potometer can be used to investigate the rate of water uptake All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Vaccinations (GCSE)
GJHeducationGJHeducation

Vaccinations (GCSE)

(0)
This is an engaging lesson that looks at how vaccinations are used in medicine and considers how the introduction of these preventative measures has reduced the incidence of disease. The lesson begins by introducing vaccinations as the deliberate exposure to antigenic material and then reminds students of the meaning of the term, antigen, so that they understand how this will elicit the desired immune response. Lots of opportunities for discussion have been written into the lesson so that key points such as how the vaccination is altered so that isn’t harmful and how memory cells work can be discussed amongst students before being clarified by the teacher and the lesson content. Moving forwards, students will be given some figures on child mortality rate in 1900 and 2000. They are shown how to manipulate this data in order to work out the percentage change. Students are then challenged to use these skills when comparing the children that were vaccinated for whooping cough in 1968 and 1995 and to make a link between vaccinations and mortality rates. These mathematical skills are being tested more and more in Biology so this guidance will help students to understand how to manipulate data when required. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding. This lesson has been designed for GCSE aged students. If you’re looking for a lesson on this same topic but for older students at A-level, then my upload “Vaccinations (A-level)” will be more suitable
Topic B1.3: Transport in cells (AQA Trilogy GCSE Combined Science)
GJHeducationGJHeducation

Topic B1.3: Transport in cells (AQA Trilogy GCSE Combined Science)

4 Resources
This bundle of 4 lessons covers all of the content in the sub-topic B1.3 (Transport in cells) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include: Diffusion Examples of diffusion in organisms Factors that affect the rate of diffusion SA:V ratio and the need for exchange surfaces Osmosis Active transport All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B2.1: Supplying the cell (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic B2.1: Supplying the cell (OCR Gateway A GCSE Combined Science)

6 Resources
This bundle of 6 lessons covers all of the content in the sub-topic B2.1 (Supplying the cell) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: Explain how substances are transported into and out of cells through diffusion, osmosis and active transport Describe the process of mitosis in growth, including the cell cycle Explain the importance of cell differentiation Describe the production of specialised cells Recall that stem cells are present in embryonic and adult animals and in meristems in plants Describe the functions of stem cells Describe the difference between embryonic and adult stem cells All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
OCR A-level Biology A Module 5.1.3 REVISION (Neuronal communication)
GJHeducationGJHeducation

OCR A-level Biology A Module 5.1.3 REVISION (Neuronal communication)

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Module 5.1.3 (Neuronal communication) of the OCR A-level Biology A specification. The sub-topics and specification points that are tested within the lesson include: The structure and function of sensory, motor and relay neurones The generation and transmission of nerve impulses in mammals The structure and roles of synapses in neurotransmission Students will be engaged through the numerous quiz rounds such as “Communicate the word” and “Only CONNECT” whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
The structures and functions of sensory, relay and motor neurones (OCR A-level Biology A)
GJHeducationGJHeducation

The structures and functions of sensory, relay and motor neurones (OCR A-level Biology A)

(0)
This is a fully-resourced lesson which covers the detail of point 5.1.3 (b) of the OCR A-level Biology A specification which states that students should be able to apply their understanding of the structures and functions of sensory, relay and motor neurones as well as the differences between myelinated and unmyelinated neurones. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The students will be able to compare these neurones based on their function but also distinguish between them based on their structural features. Time is taken to look at the importance of the myelin sheath for the sensory and motor neurones. Students will be introduced to the need for the entry of ions to cause depolarisation and will learn that this is only possible at the nodes of Ranvier when there is a myelin sheath. Key terminology such as saltatory conduction is introduced and explained. The final task involves a comparison between the three neurones to check that the students have understood the structures and functions of the neurones. Throughout the lesson, links are made to the upcoming topic of the organisation of the nervous system (5.1.5) and students will be given additional knowledge such as the differences between somatic and autonomic motor neurones. This lesson has been designed for students studying on the OCR A-level Biology A course.
Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Combined Science)

8 Resources
Each of the 8 lessons in this bundle have been written to include a wide range of activities that will engage and motivate the students whilst giving them regular oppotunities to assess their understanding of the current topic as well as checking on their knowledge of any previously linked topics. Each lesson has been written for students studying the Edexcel GCSE Combined Science course and the following specification points are covered by the lessons in this bundle: 7.1: Endocrine glands and the hormones they secrete 7.3: The control of metabolic rate by thyroxine as an example of negative feedback 7.4 & 7.5: The stages and the interactions of the hormones in the menstrual cycle 7.6 & 7.7: Barrier and hormonal contraception, the menstrual cycle and preventing pregnancy 7.8: The use of hormones in Assisted Reproductive Technology 7.9: The importance of homeostasis 7.13 & 7.14: The control of blood glucose concentration by the release of insulin and glucagon 7.15 & 7.16: The causes and control of diabetes type I and II Each lesson contains a detailed and engaging PowerPoint and accompanying worksheets, most of which are differentiated to enable students of different abilities to access the work.
The Pacinian corpuscle as a SENSORY RECEPTOR (AQA A-level Biology)
GJHeducationGJHeducation

The Pacinian corpuscle as a SENSORY RECEPTOR (AQA A-level Biology)

(1)
This lesson has been designed to cover the content of the 1st part of specification point 6.1.2 of the AQA A-level Biology specification which states that students should know the basic structure of a Pacinian corpuscle and be able to use its function as a representation of sensory receptors. By the end of the lesson students will understand that sensory receptors respond to specific stimuli and how a generator potential is established. The lesson begins by using a quiz to get the students to recognise the range of stimuli which can be detected by receptors. This leads into a task where the students have to form 4 sentences to detail the stimuli which are detected by certain receptors and the energy conversion that happen as a result. Students will be introduced to the idea of a transducer and learn that receptors always convert to electrical energy which is the generator potential. The remainder of the lesson focuses on the Pacinian corpuscle and how this responds to pressure on the skin. The involvement of sodium and potassium ions is introduced so discussions on how the membrane potential changes from resting potential in the establishment of a generator potential are encouraged. This lesson has been written for students studying on the AQA A-level Biology course and ties in nicely with other uploaded lessons which cover the content of topic 6
Temporal and spatial SUMMATION and inhibition (AQA A-level Biology)
GJHeducationGJHeducation

Temporal and spatial SUMMATION and inhibition (AQA A-level Biology)

(1)
This engaging lesson covers the detail of the 2nd part of specification point 6.2.2 of the AQA A-level Biology specification which states that students should be able to explain temporal and spatial summation as well as understand inhibition by inhibitory synapses. This is a topic which is generally poorly understood by students or brushed over so considerable time has been taken to design the activities to motivate the students so that the content is memorable whilst still being covered in detail. Links are continually made to earlier topics in this module such as synapses and generator potentials but also to topics covered in the previous year and still to be covered. The lesson begins by challenging the students to recognise a description of generator potential and they will then discover that this is also known as an EPSP. Students will recall that a small depolarisation may not lead to the opening of the voltage gated channels and therefore the full depolarisation which is needed for the initiation of an action potential and will discuss how this problem could be overcome. Lots of discussion points like this are included in the lesson to encourage the students to challenge and debate why a particular process of mechanism occurs. Students will therefore learn that EPSPs can be combined and this is known as summation. A quiz round is used to introduce temporal and spatial summation. Moving forwards, students are presented with a number of examples where they have to decide why type of summation is involved. Again, the lesson has been written to include real-life examples such as chronic pain conditions so the chances of the content sticking is increased. The final part of the lesson introduces IPSPs and the effect of these on summation and action potentials is discussed. This lesson has been designed for students studying on the AQA A-level Biology course and ties in well with the other uploaded lessons from topic 6 which include cholinergic synapses and neuromuscular junctions, sensory receptors and nerve impulses
Nerve impulses (AQA A-level Biology)
GJHeducationGJHeducation

Nerve impulses (AQA A-level Biology)

(0)
This is a highly detailed and engaging lesson that covers the detail of the 2nd part of specification point 6.2.1 of the AQA A-level Biology specification which states that students should be able to describe the establishment of resting potential, the changes in membrane potential that lead to depolarisation and the importance of the refractory period. This topic is commonly assessed in the terminal exams so a lot of time has been taken to design this resource to include a wide range of activities that motivate the students whilst ensuring that the content is covered in the depth of detail that will allow them to have a real understanding. Interspersed within the activities are understanding checks and prior knowledge checks to enable the students to not only assess their progress against the current topic but also to challenge themselves on the links to earlier topics such as methods of movements across cell membranes and saltatory conduction. There are also a number of quiz competitions which are used to introduce key terms and values in a fun and memorable way and discussion points to encourage the students to consider why a particular process or mechanism occurs. Over the course of the lesson, the students will learn and discover how the movement of ions across the membrane causes the membrane potential to change. They will see how the resting potential is maintained through the use of the sodium/potassium pump and potassium ion leakage. There is a real focus on depolarisation to allow students to understand how generator potentials can combine and if the resulting depolarisation then exceeds the threshold potential, a full depolarisation will occur. At this point in the lesson students will discover how the all or nothing response explains that action potentials have the same magnitude and that instead a stronger stimulus is linked to an increase in the frequency of the transmission. The rest of the lesson challenges the students to apply their knowledge to explain how repolarisation and hyperpolarisation result and to suggest advantages of the refractory period for nerve cells. This lesson has been designed for students studying the AQA A-level Biology course and ties in nicely with other uploaded lessons on mammalian sensory receptors and the structures and functions of the neurones.
ULTRAFILTRATION (OCR A-level Biology A)
GJHeducationGJHeducation

ULTRAFILTRATION (OCR A-level Biology A)

(0)
This detailed lesson has been written to cover the part of specification point 5.1.2 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the process of ultrafiltration. The aim of the design was to give the students the opportunity to discover this particular function and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem This lesson has been written for students studying on the OCR A-level Biology A course and ties in nicely with the other 5.1.2 kidney lessons on the structure of the nephron, selective reabsorption, osmoregulation and kidney failure
Synapses, SUMMATION and control (OCR A-level Biology A)
GJHeducationGJHeducation

Synapses, SUMMATION and control (OCR A-level Biology A)

(0)
This engaging lesson covers the detail of the 2nd part of specification point 5.1.3 (d) of the OCR A-level Biology specification which states that students should demonstrate and apply an understanding of the importance of synapses in summation and control, including inhibitory and excitatory synapses. This is a topic which is generally poorly understood by students or brushed over so considerable time has been taken to design the activities to motivate the students so that the content is memorable whilst still being covered in detail. Links are continually made to earlier topics in this module such as synapses and generator potentials but also to topics covered in the previous year and still to be covered. The lesson begins by challenging the students to recognise a description of generator potential and they will then discover that this is also known as an EPSP. Students will recall that a small depolarisation may not lead to the opening of the voltage gated channels and therefore the full depolarisation which is needed for the initiation of an action potential and will discuss how this problem could be overcome. Lots of discussion points like this are included in the lesson to encourage the students to challenge and debate why a particular process of mechanism occurs. Students will therefore learn that EPSPs can be combined and this is known as summation. A quiz round is used to introduce temporal and spatial summation. Moving forwards, students are presented with a number of examples where they have to decide why type of summation is involved. Again, the lesson has been written to include real-life examples such as chronic pain conditions so the chances of the content sticking is increased. The final part of the lesson introduces IPSPs and the effect of these on summation and action potentials is discussed. This lesson has been designed for students studying on the OCR A-level Biology course and ties in well with the other uploaded lessons from module 5.1.3 on sensory receptors, neurones, nerve impulses and cholinergic synapses
Structure of sensory and motor neurones (CIE International A-level Biology)
GJHeducationGJHeducation

Structure of sensory and motor neurones (CIE International A-level Biology)

(0)
This is a fully-resourced lesson which covers the detail of specification point 15.1 (b) of the CIE International A-level Biology specification which states that students should be able to describe the structure of a sensory and a motor neurone. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The students will be able to compare these neurones based on their function but also distinguish between them based on their structural features. Time is taken to look at the importance of the myelin sheath that is present in both neurones. Students will be introduced to the need for the entry of ions to cause depolarisation and will learn that this is only possible at the nodes of Ranvier when there is a myelin sheath. Key terminology such as saltatory conduction is introduced and explained and the lesson concludes with the introduction of the different types of motor neurones based on the type of muscle which they innervate. This lesson has been designed for students studying on the CIE International A-level Biology course and ties in well with the other uploaded lessons which cover the content of topic 15.1 (Control and coordination in mammals) .
The roles of the neuromuscular junction (CIE International A-level Biology)
GJHeducationGJHeducation

The roles of the neuromuscular junction (CIE International A-level Biology)

(0)
This concise, fully-resourced lesson covers the content of specification point 15.1 (i) of the CIE International A-level Biology specification which states that students should be able to describe the roles of the neuromuscular junction, transverse tubules and sarcoplasmic reticulum in the stimulation of the contraction of striated muscle. Due to a number of similarities between these structures and cholinergic synapses, this lesson uses prior knowledge of these connections between neurones to build a good understanding of the junctions. Students will discover that the events that occur at an axon tip mirror those which happen at the pre-synaptic bulb and this is then developed to look at the differences in terms of the events once the acetylcholine has bound to its receptor sites. There is a focus on the structure of the sarcolemma and time is taken to explain how the action potential is passed from this membrane to the transverse tubules in order to stimulate the release of calcium ions from the sarcoplasmic reticulum. As a result, this lesson ties in nicely with the following lesson on the contraction of skeletal muscle and students will be able to link the binding to troponin in that lesson to the release of these ions from this lesson. Both of the main tasks of the lesson have been differentiated so that students of all abilities can access the work and make progress. This lesson has been designed for those students studying on the CIE International A-level Biology course and ties in well with the other uploaded lessons on topic 15.1 (Control and coordination in mammals)