A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This lesson describes the structure of an amino acid and the formation and breakage of a peptide bond. The PowerPoint has been designed to cover specification point 2.3 (a) of the CIE International A-level Biology course and provides a clear introduction to the following lesson on the formation of dipeptides and polypeptides.
The lesson begins with a prior knowledge check, where the students have to use the 1st letters of 4 answers to uncover a key term. This 4-letter key term is gene and the lesson begins with this word because it is important for students to understand that these sequences of bases on DNA determine the specific sequence of amino acids in a polypeptide. Moving forwards, students are given discussion time to work out that there are 64 different DNA triplets and will learn that these encode for the 20 amino acids that are common to all organisms. The main task of the lesson is an observational one, where students are given time to study the displayed formula of 4 amino acids. They are not allowed to draw anything during this time but will be challenged with 3 multiple choice questions at the end. This task has been designed to allow the students to visualise how the 20 amino acids share common features in an amine and an acid group. A quick quiz round introduces the R group and time is taken to explain how the structure of this side chain is the only structural difference. Students will be introduced to the existence of hydrophobic and hydrophilic R groups so that they are able to apply this knowledge in future lessons where structure and shape is considered. Some time is also given to look at cysteine in greater detail due to the presence of sulfur atoms and once again a link is made to disulfide bridges for upcoming lessons. Another quiz round called LINK TO THE FUTURE will allow the students to recognise the roles performed by amino acids in the later part of the course such as translation and in the formation of dipeptides. The lesson concludes with a task that describes the breakage of the peptide bonds during hydrolysis reactions.
Water is very important for living organisms because of its numerous properties and this lesson focuses on its role as a solvent in transport. The engaging and detailed PowerPoint and accompanying worksheet have been designed to cover point 1.1 of the Edexcel International A-level Biology specification and also explains the importance of the dipole nature for this role in transport.
A mathematical theme runs throughout the lesson as students have to match the numbers calculated in the starter task to water statistics, such as the percentage of the volume of blood plasma that is water. This has been included to try to increase the relevance of each property so that it can be described in a biological context. Time is taken at the beginning of the lesson to describe the structure of water in terms of the covalent bonds between the oxygen and hydrogen atoms as well as the hydrogen bonds which form between molecules because of its polarity. Students will understand how water is a solvent which means that it is critical for transport in animals, a topic covered in the next few lessons but also for transport in plants as discussed in topic 4. The high heat capacity and latent heat of vaporisation of water is also discussed and explained through the examples of thermoregulation and the maintenance of a stable environment for aquatic animals. The final part of the lesson focuses on the involvement of water in condensation and hydrolysis reactions, two reactions which must be well understood for topic 1 and 2 and the formation and breakage of polysaccharides, lipids, polypeptides and polynucleotides.
Simple and facilitated diffusion are forms of passive transport and this lesson describes the factors that increase the rate of this movement across membranes. This fully-resourced lesson is the first in a series of two that have been designed to cover specification point 2.4 of the Pearson Edexcel A-level Biology A and the involvement of channel and carrier proteins is also described and discussed.
In a number of previous lessons that covered specification points 2.1 and 2.2, students were provided with the details of gas exchange surfaces and the structure and properties of cell membranes. This lesson continually refers back to the content of these lessons so that links can be made between the movement across a cell membrane with the concentration gradient, the parts of the membrane involved and any features that may increase the rate at which the molecules move. A series of questions about the alveoli is used to demonstrate how a large surface area, a short diffusion distance and the maintenance of a steep concentration gradient will increase the rate of simple diffusion. One of two quick quiz rounds is then used to introduce temperature and size of molecule as two further factors that can affect simple diffusion. The remainder of the lesson focuses on facilitated diffusion and describes how transmembrane proteins are needed to move small, polar or large molecules from a high concentration to a lower concentration across a partially permeable membrane.
The other lesson included in this series to cover specification point 2.4 describes active transport, endocytosis and exocytosis.
This detailed lesson describes the key structural features of a prokaryotic cell and compares these against the structures of an eukaryotic cell. The engaging PowerPoint and accompanying resources have been designed to cover specification points 1.2 (d) & (e) as detailed in the CIE International A-level Biology specification and describes how the size and cell structures differ as well as the additional features that are found in some prokaryotic cells and briefly introduces binary fission.
A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to recognise a prefix that they believe translates as before or in front of . This leads into the discovery of the meaning of prokaryote as before nucleus and this acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce
The 5 lessons included in this bundle are all fully-resourced and contain a wide range of activities that will motivate and engage the students whilst covering the content as detailed in topic 11 of the CIE A-level Biology specification (Immunity).
Exam-style questions which check on current and prior understanding, differentiated tasks, discussion points and quick quiz competitions cover the following specification points:
Phagocytes have their origin in bone marrow
Phagocytosis
The modes of action of B and T lymphocytes
The meaning of term immune response, with reference to the terms antigen, self and non-self
The role of memory cells in long term immunity
Autoimmune diseases
The relationship between the structure and function of antibodies
Distinguish between active and passive immunity
The use of vaccinations to control disease
If you would like to sample the quality of these lessons, download the phagocytes and phagocytosis lesson as this has been uploaded for free
This detailed lesson describes the properties of water to demonstrate the importance of this molecule for living organisms. The engaging PowerPoint and accompanying resource have been designed to cover the details of specification point (b) of AS unit 1, topic 1 of the WJEC A-level Biology course and has been specifically designed to ensure that each role is illustrated using a specific example.
As this is only the second lesson in the biological compounds topic, which is a topic that students tend to find difficult or potentially less engaging, the planning has centred around the inclusion of a wide variety of tasks to cover the content whilst maintaining motivation and engagement. These tasks include current understanding and prior knowledge checks, discussion points and quick quiz competitions to introduce key terms and values in a memorable way. The start of the lesson considers the structure of water molecules, focusing on the covalent and hydrogen bonds, and the dipole nature of this molecule. Time is taken to emphasise the importance of these bonds and this property for the numerous roles of water and then over the remainder of the lesson, the following properties are described and discussed and linked to real-life examples:
polarity
ability to form hydrogen bonds
surface tension
as a solvent
thermal properties
as a metabolite
The final part of the lesson introduces condensation and hydrolysis reactions and students will learn that a clear understanding of these reactions is critical as they will reappear throughout the topic in the synthesis and breakdown of biological compounds
This detailed lesson describes the process of translation at the ribosome and includes detailed descriptions of the roles of the mRNA, tRNA and rRNA. The PowerPoint and accompanying resources have been designed to cover the second part of point 1.4 (vi) of the Edexcel A-level Biology B specification and this lesson also includes continual links to the previous lessons in this topic on transcription and the structure of DNA and RNA.
Translation is a topic which is often poorly understood and so this lesson has been written with the aim of supporting the students to answer the different types of questions that can arise. The lesson begins by challenging the students to consider why it is so important that the amino acids are assembled in the correct order during the formation of the chain. Moving forwards, a quick quiz round called “LOST IN TRANSLATION” is used to check on their prior knowledge of the mRNA strand, the tRNA molecules and the ribosomes. The next task involves a very detailed description of translation that has been divided into 14 statements which the students have to put into the correct order. By giving them a passage of this detail, they can pick out the important parts to use in the next task where they have to answer shorter questions worth between 3 and 4 marks. These types of questions are common in the assessments and by building up their knowledge across the lesson, their confidence to tackle this type of question should increase. The final two tasks of the lesson involve another quiz, where the teams compete to transcribe and translate in the quickest time before using all that they have absorbed to answer some questions which involve the genetic code and the mRNA codon table
This lesson describes the structure of messenger and transfer RNA and compares this against the structure of DNA. The engaging and detailed PowerPoint and accompanying resource have been designed to cover points 1.4 (iv) and (v) as detailed in the Edexcel A-level Biology B specification which states that students should be able to describe the structure of the two forms of this nucleic acid. Students were introduced to the detailed structure of a nucleotide and DNA in the first lesson of topic 1.4, so this lesson is written to tie in with those and continuously challenge prior knowledge as well as the understanding of the current topic.
The lesson begins with the introduction of RNA as a member of the family of nucleic acids and this enables students to recognise that this polynuclotide shares a number of structural features that were previously seen in DNA. A quiz round called “A FAMILY AFFAIR” is used to challenge their knowledge of DNA to recognise those features that are also found on RNA such as the chain of linked nucleotides, pentose sugars, nitrogenous bases and phosphodiester bonds. The next task pushes them to consider features that have not been mentioned and therefore are differences as they answer a structured exam-style question on how RNA differs from DNA. Students will learn that RNA is shorter than DNA and this leads into the final part of the lesson where mRNA and tRNA are introduced and again they are challenged to use the new information explain the difference in size. Brief details of transcription and then translation are provided so that students are prepared for the upcoming lessons on protein synthesis
This engaging lesson describes how the structure and properties of phospholipids relate to their functions in cell membranes. The PowerPoint has been designed to cover point 1.2 (iv) as detailed in the Edexcel A-level Biology B specification and includes regular references to the previous lesson on triglycerides to check on knowledge and understanding
The role of a phospholipid in a cell membrane provides the backbone to the whole lesson. A quick quiz round called family affair, challenges the students to use their knowledge of the structure of a triglyceride to identify the shared features in a phospholipid. This then allows the differences to be introduced, such as the presence of a phosphate group in place of the third fatty acid. Moving forwards, the students will learn that the two fatty acid tails are hydrophobic whilst the phosphate head is hydrophilic which leads into a key discussion point where the class has to consider how it is possible for the phospholipids to be arranged when both the inside and outside of a cell is an aqueous solution. The outcome of the discussion is the introduction of the bilayer which is critical for the lessons in topic 4 on the fluid mosaic model. The final part of the lesson explains how both facilitated diffusion and active transport mean that proteins are found floating in the cell membrane and this also helps to briefly prepare the students for upcoming topic 4 lessons.
This engaging lesson acts as an introduction to topic 1.3 (proteins) by introducing the general structure of an amino acid. The PowerPoint lesson has been designed to cover point 1.3 (i) as detailed in the Edexcel A-level Biology B specification and provides a clear introduction to the following lesson on the formation of polypeptides, protein structures and globular and fibrous proteins.
The lesson begins with a prior knowledge check, where the students have to use the 1st letters of 4 answers to uncover a key term. This 4-letter key term is gene and the lesson begins with this word because it is important for students to understand that these sequences of bases on DNA determine the specific sequence of amino acids in a polypeptide. Moving forwards, students are given discussion time to work out that there are 64 different DNA triplets and will learn that these encode for the 20 amino acids that are common to all organisms. The main task of the lesson is an observational one, where students are given time to study the displayed formula of 4 amino acids. They are not allowed to draw anything during this time but will be challenged with 3 multiple choice questions at the end. This task has been designed to allow the students to visualise how the 20 amino acids share common features in an amine and an acid group. A quick quiz round introduces the R group and time is taken to explain how the structure of this side chain is the only structural difference, before cysteine is considered in greater detail due to the presence of sulfur atoms. Students are briefly introduced to disulfide bridges so they will recognise how particular bonds form between the R groups in the tertiary structure which is covered in the next lesson. One more quiz round called LINK TO THE FUTURE is used to conclude the lesson and demonstrates the range of roles performed by amino acids in the latter part of the course including translation at the ribosomes.
This lesson describes the formation of dipeptides & polypeptides and the different levels of protein structure. Both the engaging PowerPoint and accompanying resources have been designed to cover specification points 1.3 (ii), (iii) & (iv) of the Edexcel A-level Biology B specification and also makes continual links to previous lessons such as amino acids as well as to upcoming lessons like antibodies and enzymes so students can understand where proteins are involved.
The start of the lesson focuses on the formation of a peptide bond during a condensation reaction so that students can understand how a dipeptide is formed and therefore how a polypeptide forms when multiple reactions occur.
The main part of the lesson describes the different levels of protein structure. A step by step guide is used to demonstrate how the sequences of bases in a gene acts as a template to form a sequence of codons on a mRNA strand and how this is translated into a particular sequence of amino acids known as the primary structure. The students are then challenged to apply their understanding of this process by using three more gene sequences to work out three primary structures and recognise how different genes lead to different sequences. Moving forwards, students will learn how the order of amino acids in the primary structure determines the shape of the protein molecule, through its secondary, tertiary and quaternary structure and time is taken to consider the details of each of these. There is a particular focus on the different bonds that hold the 3D shape firmly in place and a quick quiz round then introduces the importance of this shape as exemplified by enzymes, antibodies and hormones. Students will see the differences between globular and fibrous protein and again biological examples are used to increase relevance. The lesson concludes with one final quiz round called STRUC by NUMBERS where the students have to use their understanding of the protein structures to calculate a numerical answer.
This bundle of 6 fully-resourced lessons have been designed to cover the content as detailed in topic 1.4 of the Edexcel A-level Biology B specification. The specification points in this DNA and protein synthesis topic which are covered by the lessons are as follows:
The structure of DNA
The semi-conservative replication of DNA
A gene is a sequence of bases on DNA that codes for an amino acid sequence
The structure of mRNA
The structure of tRNA
The process of transcription
The process of translation
Base deletions, insertions and substitutions as gene mutations
The effect of point mutations on amino acid sequences
The engaging PowerPoint lessons and accompanying resources contain a wide range of activities and tasks that include exam-style questions with displayed mark schemes, quick quiz competitions, useful hints and discussion periods.
If you would like to see the quality of the lessons then download the structure of DNA and transcription lessons as these have been uploaded for free.
This fully-resourced lesson describes the conversion of glucose to pyruvate during glycolysis in the cytoplasm and produces ATP and reduced NAD. The engaging PowerPoint and accompanying differentiated resources have been designed to cover point 5.1 (i) as detailed in the Edexcel A-level Biology B specification and includes the phosphorylation of glucose, the breakdown to glycerate-3-phosphate and the subsequent oxidation to produce ATP and the reduced coenzyme.
The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the monosaccharides, the breakdown into GP and the production of the ATP, reduced coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed.
This lesson describes how the hydrolysis of ATP supplies energy for biological processes and how the phosphorylation of ADP requires energy. The PowerPoint has been designed to cover point 5.6 of the Pearson Edexcel A-level Biology A specification and also describes how ATP is made in the light-dependent stage of photosynthesis and is needed in the light-independent stage.
The start of the lesson focuses on the structure of this energy currency and challenges the students to use their knowledge of nucleotides and specifically RNA nucleotides to recognise the components of ATP. As a result, they will learn that this molecule consists of adenine, ribose and three phosphate groups. In order to release the stored energy, ATP must be broken down and students will be given time to discuss which reaction will be involved as well as the products of this reaction. Time is taken to describe how the hydrolysis of ATP can be coupled to energy-requiring reactions within cells and the examples of skeletal muscle contraction are used as this is covered in greater detail in topic 7. The final part of the lesson considers how ATP is formed when ADP is phosphorylated and students will learn that this occurs in the mitochondria and chloroplast during aerobic respiration and photosynthesis respectively, so that it ties in with the upcoming lessons in topic 5 and 7.
This fully-resourced lesson describes how light intensity, carbon dioxide concentration and temperature limit the rate of photosynthesis. The PowerPoint and accompanying resources have been designed to cover point 5.2.1 (g) (i) of the OCR A-level Biology A specification and also includes a brief consideration of water stress.
The lesson has been specifically written to tie in with the three previous lessons in this module which covered the structure of the chloroplast, the light-dependent and light-independent stages and the uses of TP. Exam-style questions are included throughout the lesson and these require the students to explain why light intensity is important for both reactions as well as challenging them on their ability to describe how the relative concentrations of GP, TP and RuBP would change as carbon dioxide concentration decreases. There are also links to previous topics such as enzymes when they are asked to explain why an increase in temperature above the optimum will limit the rate of photosynthesis. Step by step guides are included to support them to form some of the answers and mark schemes are always displayed so that they can quickly assess their understanding and address any misconceptions.
This fully-resourced lesson describes the components of the chloroplast, focusing on the grana and stroma as the sites of photosynthesis. The engaging PowerPoint and accompanying resources have been designed to cover point 5.2.1 (b) of the OCR A-level Biology A specification and has been specifically designed to introduce students to the light-dependent and light-independent stages before they are covered in detail in upcoming lessons.
Students were introduced to eukaryotic cells and their organelles structures in module 2.1.1 so this lesson has been written to test and to build on that knowledge. A version of the quiz show POINTLESS runs throughout the lesson and this maintains engagement whilst challenging the students to recall the parts of the chloroplast based on a description which is related to their function. The following structures are covered in this lesson:
double membrane
thylakoids (grana)
stroma
intergranal lamellae
starch grains
chloroplast DNA and ribosomes
Once each structure has been recalled, a range of activities are used to ensure that key details are understood such as the role of the thylakoid membranes in the light-dependent reactions and the importance of ATP and reduced NADP for the reduction of GP to TP in the Calvin cycle. Links to other topics are made throughout and this is exemplified by the final task of the lesson where students are challenged on their recall of the structure, properties and function of starch (as originally covered in module 2.1.2)
This lesson describes the mechanism of ventilation in mammals, including the roles of the ribcage, intercostal muscles and the diaphragm. The content of the engaging PowerPoint has been designed to cover specification point 3.1.3 (d) of the OCR A-level Biology A specification and describes the mechanism of inhalation and exhalation at rest.
The lesson begins with a focus on the diaphragm and students will discover that this sheet of muscle is found on the floor of the thoracic cavity. Whilst planning the lesson, it was deemed important to introduce this region of the body at an early stage because the best descriptions will regularly reference the changes seen in this cavity. As the mechanism of inhalation is a cascade of events, the details of this process are covered in a step by step format using bullet points. At each step, time is taken to discuss the key details which includes an introduction to Boyle’s law that reveals the inverse relationship between volume and pressure. It is crucial that students are able to describe how the actions of the diaphragm, external intercostal muscles and ribcage result in an increased volume of the thoracic cavity and a subsequent decrease in the pressure, which is below the pressure outside of the body. At this point, their recall of the structures of the mammalian gas exchange system is tested, to ensure that they can describe the pathway the air takes on moving into the lungs.
The remainder of the lesson involves a task which challenges the students to describe exhalation and then the accessory muscles involved in forced ventilation are also considered.
This fully-resourced lesson describes the process of DNA replication and includes key details of the role of DNA polymerase. The detailed PowerPoint and accompanying resources have been designed to cover point 2.10 (i) of the Edexcel International A-level Biology specification and also includes descriptions of the roles of DNA helicase and DNA ligase and an introduction of this type of replication as semi-conservative.
As the main focus of this lesson is the roles of the enzymes, students will understand how DNA helicase breaks the hydrogen bonds between nucleotide bases, DNA polymerase forms the growing nucleotide strands and DNA ligase joins the nucleic acid fragments. The specification specifically mentions DNA polymerase and in line with this, extra time is taken to explain key details, such as the assembly of strands in the 5’-to-3’ direction by this enzyme, so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure and hydrolysis reactions through a range of exam questions and answers are displayed so that any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
This fully-resourced lesson describes the structure of the cell surface membrane and references Singer and Nicholson’s fluid mosaic model. The detailed and engaging PowerPoint and accompanying resources have been designed to cover specification point 4.2 (i) of the Edexcel A-level Biology B specification and also makes clear links are made to related topics such as the binding of hormones as covered in topic 9 and the electron transport chain as covered in topic 5.
The fluid mosaic model is introduced at the start of the lesson so that it can be referenced at appropriate points throughout the lesson. Students were introduced to phospholipids in topic 1 and an initial task challenges them to spot the errors in a passage describing the structure and properties of this molecule. This reminds them of the bilayer arrangement, with the hydrophilic phosphate heads protruding outwards into the aqueous solutions on the inside and the outside of the cell. In a link to some upcoming lessons on the transport mechanisms, the students will learn that only small, non-polar molecules can move by simple diffusion and that this is through the tails of the bilayer. This introduces the need for transmembrane proteins to allow large or polar molecules to move into the cell by facilitated diffusion and active transport. Proteins that act as receptors as also introduced and an opportunity is taken to make a link to topic 9 so that students can understand how hormones or drugs will bind to target cells in this way and cause the release of cAMP on the interior of the cell. Moving forwards, the structure of cholesterol is covered and students will learn that this hydrophobic molecule sits in the middle of the tails and therefore acts to regulate membrane fluidity. The final part of the lesson challenges the students to apply their newly-acquired knowledge to a series of questions where they have to explain why proteins may have moved when two cells are used and to suggest why there is a larger proportion of these proteins in the inner mitochondrial membrane than the outer membrane.
This fully-resourced lesson describes the roles of the platelets and plasma proteins in the sequence of events that lead to blood clotting. The engaging PowerPoint and accompanying resources have been primarily designed to cover the content detailed in point 4.4 (viii) of the Edexcel A-level Biology B specification and includes descriptions of the roles of thromboplastin, thrombin and fibrin but time has also been taken to look at haemophilia as a sex-linked disease so that students are prepared for topic 8 (genetic variation).
The lesson begins with the introduction of clotting factors as integral parts of the blood clotting process and explains that factor III, thromboplastin, needs to be recalled as well as the events that immediately precede and follows its release. Students will learn how damage to the lining and the exposure of collagen triggers the release of this factor and how a cascade of events then results. Quick quiz rounds and tasks are used to introduce the names of the other substances involved which are prothrombin, thrombin, fibrinogen and fibrin. In a link to the upcoming topic of proteins, students will understand how the insolubility of fibrin enables this mesh of fibres to trap platelets and red blood cells and to form the permanent clot.
The final part of the lesson introduces haemophilia as a sex-linked disease and students are challenged to apply their knowledge to an unfamiliar situation as they have to write genotypes and determine phenotypes before explaining why men are more likely to suffer from this disease than women.