A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A fully resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within topics C4 - C6 of the OCR Gateway A GCSE Combined Science specification that can be assessed in PAPER 4
The topics covered are:
C4: Predicting and identifying reactions and products
C5: Monitoring and controlling chemical reactions
C6: Global challenges
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require further attention
A fully resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within TOPIC 9 (Chemistry of the atmosphere) of the AQA GCSE Chemistry specification (specification point C4.9).
The topics that are tested within the lesson include:
The proportion of different gases in the atmosphere
The Earth’s early atmosphere
Greenhouse gases
Atmospheric pollutants
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require further attention
This bundle of 6 lessons covers the majority of the content in Topic P4 (Atomic structure) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include:
Developing the atomic model
Isotopes
Nuclear radiation
Decay equations
Half-life
Irradiation and contamination
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This is a fully-resourced lesson which includes an engaging and detailed lesson presentation and differentiated worksheets that together guide students through the key details of endothermic and exothermic reactions. This lesson has been designed for GCSE students but could be used with students entering this topic at A-level who are looking for a recap on the key details.
This lesson focuses on a few critical areas of these reactions and those which are often poorly understood. For example, considerable time is taken to ensure that students understand how energy is taken in to break bonds in a reaction and given out when bonds are formed. From this basis, they learn to compare the amount of energy taken in with the amount given out and ultimately determine whether it is an endothermic or exothermic reaction. The format of the lesson is that students are guided through the combustion of methane as an exothermic reaction and shown how to draw reaction profiles and calculate energy changes using the bond energies to prove it is that type of reaction. Having worked with the teacher and each other on this reaction, students are then challenged to bring their skills together to describe, explain and represent an endothermic reaction. If students feel that they will need some assistance on this task, the worksheet has been differentiated so they can still access the learning. There are a number of quick competitions written into the lesson to maintain engagement and also progress checks are found at regular intervals so students can constantly assess their understanding. The lesson finishes with a final game called The E factor which tests the students knowledge from across the whole lesson.
A fully-resourced lesson that uses a range of tasks, understanding checks and quick competitions to guide students through calculating the relative formula mass for substances with a range of chemical formulae. The relative formula mass is required in a lot of calculations, such as those that involve moles, so it is an important skill to get right. Worked examples are used throughout the lesson to visualise the metho for the students. Initially, students will learn how to calculate the mass from simple formulae before helpful hints are provided for harder formulae such as those that contain a bracket. Students are given the chance to apply their knowledge by proving that mass is conserved in a reaction. This lesson has been written for GCSE students but could be used with higher ability KS3 students in lessons that are looking to push knowledge forward
This is a fully-resourced lesson that looks at the meaning of a limiting reactant in a chemical reaction and guides students through how to apply this to a number of calculations. Step by step guides are used to go through worked examples so students are able to visualise how to set out their work.
The lesson begins with a fun analogy involving sausages and potatoes so that students can identify that the potatoes limited the sale of food. Alongside this, students will learn the key term excess. Some time is then taken to ensure that students can spot the limiting reactant and the one in excess in actual chemical reactions and method descriptions. Moving forwards, students will be guided through two calculations that involve limiting reactants - those to calculate the theoretical yield and the other to calculate a balanced symbol equation. Other skills involved in these calculations such as calculating the relative formula mass are recalled and a few examples given to ensure they are confident. The question worksheet has been differentiated two ways so that any students who need extra assistance can still access the learning.
This lesson has been written for GCSE students.
This bundle of 10 lessons covers a lot of the content in Topic C4 (Extracting metals and equilibria) of the Edexcel GCSE Combined Science & GCSE Chemistry specifications. The topics covered within these lessons include:
Reactivity of metals
Redox reactions
Extracting metals
Biological metal extraction
Reversible reactions
The conditions of the Haber Process
Temperature and the position of equilibrium
Pressure and the position of equilibrium
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 10 lessons covers all of the content in Topic C4 (Stoichiometry) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specific points covered within these lessons include:
Use the symbols of the elements and write the formulae of simple compounds
Determine the formula of an ionic compounds from the charges on the ions present
Construct and use word equations
Construct and use symbol equations, with state symbols, including ionic equations
Deduce the balanced equation
Relative formula mass
Define the mole in terms of Avogadro’s constant
Use the molar gas volume
Calculate stoichiometric reacting masses and volumes of gases
Calculate the concentration of solution
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
This bundle of 8 lessons covers the majority of the content in the sub-topic C6.1 (Improving processes and products) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include:
Extracting metals by using carbon
Explain why and how electrolysis is used to extract metals from their ores
Alternative biological methods of metal extraction
The separation of crude oil by fractional distillation
The fractions as alkanes
The production of useful products by cracking
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 10 lessons covers the majority of the content in Topic C1e (Chemical formulae, equations and calculations) of the Edexcel iGCSE Chemistry specification. The topics and specification points covered within these lessons include:
Writing word equations
Writing balanced symbol equations (with state symbols)
Calculate relative formula masses
Know that the mole is the unit for the amount of a substance
Understand how to carry out calculations involving amount, relative atomic and formula mass
Calculate reacting masses
Calculate percentage yield
Know the terms empirical formula and molecular formula and be able to calculate both
Calculate concentration of solutions
Calculate gas volumes
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 3 lessons covers the majority of the content in Topic C2h (Chemical tests) of the Edexcel iGCSE Chemistry specification. The topics and specification points covered within these lessons include:
Describe tests for the colourless gases
Describe how to carry out a flame test
Know the colours produced in the flame tests for the different cations
Describe further tests for the cations
Describe tests for the anions
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 7 lessons covers a lot of the content in Topic C7(Rates of reaction and enrgy changes) of the Edexcel GCSE Combined Science & GCSE Chemistry specifications. The topics covered within these lessons include:
Determining the rate of reaction
The collision theory
The effect of temperature and concentration on the rate of reaction
Catalysts and the rate of reaction
Endothermic and exothermic reactions
Calculating energy changes in reactions
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 3 lessons covers the majority of the content in the sub-topic C3.4 (Electrolysis) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include:
Recall that metals are formed at the cathode and non-metals are formed at the anode
Predict the products of the electrolysis of ionic compounds in molten state
Describe competing reactions in the electrolysis of aqueous solutions
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
A short lesson which includes a lesson presentation (27 slides) and a hint worksheet and looks at redox reactions that involve oxygen and electrons. When focussing on oxygen, the lesson uses the example of extracting metals by reacting them with carbon to show how the metal is reduced and the carbon is oxidised. Key terminology such as reducing agents are also discussed. The important topic of electrolysis is used when teaching about the redox reactions that involve electrons and students are reminded about half equations.
This lesson has been designed for GCSE students (14 - 16 year olds in the UK) but is suitable for other ages
A fully-resourced lesson, which includes a lesson presentation (49 slides) and associated worksheets and guides students through the topic of extracting metals. The main focus of the lesson is the extracting of the metals (from their oxides) that fall below carbon in the reactivity series. Students will see how the metal oxides are reduced in order to form the required metal. Some time is taken to briefly look at the extraction of aluminium from aluminium oxide but if a lesson on the extraction of a particular metal is sought, then please look at my additional resources which cover iron and aluminium in greater detail.
This lesson has been designed for GCSE students (14 - 16 year olds in the UK)
A fully resourced lesson that includes a lesson presentation (31 slides) and a related newspaper story to allow the students to compare the structure and properties of two allotropes of carbon, diamond and graphite. Students are guided through the structures and then challenged to work out how this relates to their respective properties. Time is taken to focus on the comparison between the two in terms of their ability to conduct electricity. A step by step answer is used to explain why diamond cannot conduct electricity so that students can use this when forming their answer for graphite.
This lesson has been designed primarily for GCSE students (14 - 16 year olds) where questions comparing these two substances are common but it is suitable for use with younger students too.
An informative lesson presentation (24 slides) that looks at the relative size of the nanoparticles and explains why they are so effective for a range of purposes.
The lesson begins by looking at exactly how small nanoparticles are and ensures that students can recognise this size in a range of ways, including standard form. Moving forwards, in order to help students to understand why these nanoparticles are being used in a lot of different ways, students are introduced to bulk materials. Included in the remainder of the lesson is calculating the surface area to volume ratio so this can be used as a comparison point. There are regular progress checks throughout the lesson so that students can assess their understanding.
This lesson has been written for GCSE students.
A fully-resourced lesson which guides students through drawing, writing and recognising the electronic configurations of atoms and ions. The lesson includes an engaging lesson presentation (33 slides), an associated worksheet and a competition worksheet.
The lesson begins by introducing the students to the number of electrons that can be held on the first three electron shells. They are then shown how to draw an electronic configuration and write this in brackets form. Students are given the opportunity to apply this knowledge by drawing the configuration of first 20 elements of the Periodic Table. Moving forwards, students are guided to enable them to discover how the electron configuration is linked to the position of an atom in the Periodic Table. The remainder of the lesson focuses on ions and how the configuration of these substances can be recognised. Some time is taken to explain how ions are formed from atoms and the lesson finishes with a competition which challenges students to identify atoms or ions from their configurations to form a word. There are regular progress checks throughout the lesson to allow the students to check on their understanding and a range of quiz competitions to maintain engagement.
This lesson has been written for GCSE students but could be used with younger students, especially the initial part of the lesson on atoms and the link to the Periodic Table
A concise lesson presentation (21 slides) which uses a range of methods to allow students to discover how to draw dot and cross diagrams for covalent structures. The lesson begins by challenging the students to recall their knowledge of electronic structure to show the outer shell of two specified atoms. They will then see how it is possible for both of these atoms to get full outer shells by sharing as happens in this type of bonding. A few more examples are used to consolidate this understanding before quick competition is used to check the understanding so far. Moving forwards, a step by step guide shows students how to draw dot and cross diagrams using the same techniques as was utilised with the hulas.
This lesson has been written for GCSE students but could be used with higher ability KS3 students.
This lesson explains the properties of typical covalent simple molecular compounds and introduces diamond and graphite as giant substances. The lesson PowerPoint and accompanying resource have been primarily designed to cover point 1.34 of the Edexcel GCSE Chemistry & Combined Science specifications but also links to points 1.35 - 1.37 where the structure and uses of the giant covalent substances are described.
The lesson begins with a quick recap task where students have to recognise a covalent bond from a description and fill the missing part. Moving forwards, they are introduced to the fact that covalent molecules can be simple or giant. They are then presented with a table showing some properties of covalent molecules and having to group them as simple or giant in the short space of time that the table remains displayed on the board. This task challenges their observational skills, something which will again be tested later in the lesson as they study the structure of graphite and diamond. Time is taken to ensure that key details such as the strong covalent bonds in both sets of molecules is understood and that it is the weak intermolecular forces which are actually responsible for the low melting and boiling points. The last part of the lesson introduces diamond and graphite as allotropes of carbon and students will briefly learn why one of these conducts electricity whilst the other doesn’t. If you want a lesson about these allotropes in more detail, then please look for “Diamond and Graphite”. Progress checks have been written into the lesson at regular intervals so that students are constantly assessing their understanding and so misconceptions are quickly identified.