A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A resourced lesson which guides students through the method of writing word equations for a range of different chemical reactions. The lesson includes an engaging and informative lesson presentation (33 slides) and an associated worksheet containing questions.
The lesson begins by reminding students of the form which word equations take, with the reactants chemically changing into the products. Moving forwards, time is taken to show students how to work out the name of a compound that contains either 2 or 3 elements. This moves nicely into the reaction of acids and how to name the salt that is produced. Students are shown the general formula for the reactions of acids with a metal, a metal carbonate and a metal oxide or hydroxide so that they can form word equations for each of these reactions in the progress check task. The final section of the lesson introduces reversible reactions to the students and shows them the symbol that is used in these word equations to replace the arrow. There are regular progress checks throughout the lesson to allow the students to check on their understanding and thorough explanations of the required answers.
This lesson has been written for GCSE students but is perfectly suitable for KS3 students too.
An informative lesson presentation (24 slides) that looks at the relative size of the nanoparticles and explains why they are so effective for a range of purposes.
The lesson begins by looking at exactly how small nanoparticles are and ensures that students can recognise this size in a range of ways, including standard form. Moving forwards, in order to help students to understand why these nanoparticles are being used in a lot of different ways, students are introduced to bulk materials. Included in the remainder of the lesson is calculating the surface area to volume ratio so this can be used as a comparison point. There are regular progress checks throughout the lesson so that students can assess their understanding.
This lesson has been written for GCSE students.
An informative lesson presentation (44 slides) that looks at the work of the key Scientists involved in the development of the atomic model. Dalton, Thomson, Rutherford and Bohr were four men whose work has led to the changes in the atomic model over the years and this lesson looks at parts of each of their work. There is a focus on Rutherford’s work with the alpha particles and students are challenged to draw conclusions based on the deflections they are shown. There is lots of time written into the lesson for consolidation and regular progress checks ensure that students have the opportunity to assess their understanding. This lesson has been written for GCSE students but could be used with KS3 students who perhaps are carrying out a project on the atom and want to add detail to their work
A fully-resourced lesson which looks at the chemical reaction that is aerobic respiration and ensures that students can apply their knowledge to application questions which challenge them to make links to related topics. The lesson includes a practical-based lesson presentation (19 slides) and associated worksheets containing differentiated questions.
The aim of the beginning of the lesson involves getting students to understand the term, concentration, so that they are able to use it accurately in their descriptions. This is a term which is commonly wrongly used by students. Moving forwards, students will carry out a practical to collect valid results so that they can apply their knowledge of concentration to explain a trend. Certain practical skills are challenged during the lesson such as the drawing of a results table to display the results. A worksheet containing questions on the practical is differentiated so that students who need assistance are still able to access the learning.
This lesson has been designed for GCSE students but can be used with KS3 students who are learning about chemical reactions.
This lesson presentation looks at the carboxylic acids and focuses on the names, displayed formula, chemical formulae and reactions of this homologous series. The lesson begins with a bit of fun which gets enables the students to recognise that the functional group is COOH. A step by step guide is used to show the students how to draw the displayed formula for ethanoic acid, using the functional group before they apply their knowledge to draw the remaining acids in the first four. This series are connected by a general formula and students are shown how it is worked out for the alkanes and the alkenes so that students can work it out for the acids. Moving forwards, the reactions of these acids is shown and related to the reactions of acids that was previously learnt. Students will recall how to write the name of the salt and the balanced symbol equation.
This lesson has been written for GCSE students
A thought-provoking lesson which explores why certain conditions are chosen for reversible reactions. Throughout this lesson, students are challenged to think about the topic in three ways. Of course, they have to consider the chosen conditions from a Scientific angle by knowing how temperature and pressure affect the position of the equilibrium. They must also think about the business (and health) side of the argument by recognising that increased pressures are both dangerous and expensive. Finally, they are taught recognise how the chosen conditions are in fact a compromise which has taken both the Science and business into account. Students are guided through the choice of conditions for the production of methanol so that they can apply their knowledge to the production of ammonia by the Haber process.
This lesson has been designed for GCSE students.
This bundle of 10 lessons covers the majority of the content in Topic C4 (Chemical changes) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include:
Acids and bases
Reactions of acids
The reactivity series of metals
Extracting metals
Redox reactions
Electrolysis of molten salts and solutions
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 10 lessons covers the majority of the content in Topic C2 (Bonding, structure and properties of matter) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include:
Formation of ions
Ionic bonding
Ionic compounds
Covalent bonding
Metallic bonding
Simple molecular substances
Polymers and Giant covalent structures
Allotropes of carbon
States of matter
Changing state
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 7 lessons covers the majority of the content in Topic C14 (Organic Chemistry) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specification points covered within these lessons include:
Name and draw the structures of the alkanes and alkenes
Separation by fractional distillation
The names of the fractions and the properties of molecules within a fraction
The properties and reactions of the alkanes
Alkenes as unsaturated hydrocarbons
The cracking reaction to produce alkenes
Recognising saturated and unsaturated hydrocarbons
The formation of ethanol by fermentation or hydration of ethene
Complete combustion of ethanol
Polymers
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
This bundle of 4 lessons goes through the key details of ionic, covalent and metallic bonding. All of the lessons are detailed and focus on guiding students through the explanations of how the structure of these bonds is related to the properties of the substances. Students are shown how to draw dot and cross diagrams for both ionic and covalent substances and there is a focus on key terminology in all of them, such as delocalised electrons and electrostatic forces
This is a fully-resourced lesson that looks at how the atomic number and electron configuration of an atom can be used to place an element in the Periodic Table. This lesson has primarily been designed for GCSE-aged students but can be used with younger students who are studying the Table and know about electron configurations.
The lesson begins by looking at the atomic number and ensuring that students recall how this number can be used to identify the number of protons (and electrons) in an atom. Time is taken to link to Dmitri Mendeleev and how he used the atomic number in his original formatting. Moving forwards, students will be challenged to write the electron configurations for a number of atoms from group 2 and then to identify the connection between the number of electrons in the outer shell and the group number. Again, time is taken to make links to other related topics such as the alkali metals, halogens and noble gases and how their chemical properties are similar based on this outer shell number. Students will discover how the period number is linked to the number of occupied shells. The remainder of the lesson uses two understanding checks to challenge the students to bring together their knowledge to place an element in the correct place in a blank Periodic Table when given information about the atomic number or electron configuration.
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 7 (Chemical reactions) of the CIE IGCSE Chemistry (0620) specification. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers.
The specification points that are covered in this revision lesson include:
CORE
Describe and explain the effect of concentration, particle size, catalysts (including enzymes) and temperature on the rate of reactions
Interpret data obtained from experiments concerned with rate of reaction
Understand that some chemical reactions can be reversed by changing the reaction conditions
Define oxidation and reduction in terms of oxygen loss/gain.
SUPPLEMENT
Devise and evaluate a suitable method for investigating the effect of a given variable on the rate of a reaction
Describe and explain the effects of temperature and concentration in terms of collisions between reacting particles. (An increase in temperature causes an increase in collision rate and more of the colliding molecules have sufficient energy (activation energy) to react whereas an increase in concentration only causes an increase in collision rate.)
Predict the effect of changing the conditions (concentration, temperature and pressure) on other reversible reactions
Demonstrate knowledge and understanding of the concept of equilibrium
Define redox in terms of electron transfer
Define oxidising agent as a substance which oxidises another substance during a redox reaction. Define reducing agent as a substance which reduces another substance during a redox reaction.
Identify oxidising agents and reducing agents from simple equations
The students will thoroughly enjoy the range of activities, which include quiz competitions such as “FROM NUMBERS 2 LETTERS” where they have to compete to be the 1st to get an important abbreviation whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
An engaging lesson presentation (54 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within the Chemistry unit C7 (Organic chemistry) of the AQA GCSE Combined Science specification (specification point C5.7)
The topics that are tested within the lesson include:
Crude oil, hydrocarbons and alkanes
Fractional distillation and petrochemicals
Properties of hydrocarbons
Cracking and alkenes
Students will be engaged through the numerous activities including quiz rounds like “What FRACTION of this is correct” and “Are you on FORM” whilst crucially being able to recognise those areas which need further attention
An engaging lesson presentation (70 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within the Chemistry unit C1 (Atomic structure and the Periodic Table) of the AQA GCSE Combined Science specification (specification unit C5.1).
The topics that are tested within the lesson include:
Mixtures
Development of the model of the atom
The subatomic particles
Electronic structure
The periodic table
Metals and non-metals
Group 0
Group 1
Group 7
Students will be engaged through the numerous activities including quiz rounds like “UNLOCK the safe" whilst crucially being able to recognise those areas which need further attention
A resourced lesson which looks at the key details of a titration to enable students to generate results which could be used in a titration calculation. The lesson includes an engaging lesson presentation (29 slides) and an associated worksheet.
The lesson begins with a spot of fun as students are challenged to read the script of a scene from Friends to identify a neutralisation reaction. Students will learn that a method called a titration can use the results of an acid-base neutralisation to work out the concentration of an unknown. Students will learn the names of the equipment involved through a quiz competition and will then be shown how to set up a table to collect the results. Key terms such as titre, rough and end-point are explained. The lesson finishes with one further round of the competition called “Take the HOTSEAT” so that the knowledge of the key terminology from today’s lesson can be checked. The lesson has been designed with regular progress checks throughout so that students can check their understanding.
This lesson has been designed for GCSE students.
A fully-resourced lesson which looks at the chemical reaction of cracking and the conditions that are needed for this reaction on both an industrial scale and in a laboratory. The lesson includes an engaging lesson presentation (33 slides) and an associated worksheet containing questions for a progress check.
The lesson begins by challenging the students to use their knowledge of alkanes and a given example to work out the name of a 6, 7 and 8 carbon alkane. Students need to be able to name the alkanes and alkenes in order to understand the products of a cracking reaction. A number of quiz competitions are used to introduce both the name of the reaction but also the temperature that is needed when it is carried out on an industrial scale. Students will then be shown a diagram of a cracking experiment in a laboratory so they can discover that a catalyst is also needed. Students will learn, either through carrying out the experiment or through the informative slide, that the product of a cracking reaction is a smaller alkane molecule and a smaller alkene molecule. Time is taken to go back over the meaning of saturated and unsaturated and once the students have been introduced to bromine water, they are challenged to work out what the respective reactions will be when it is added to an alkane and an alkene. The remainder of the lesson focuses on writing word and chemical symbol equations for a cracking reaction. Students will be shown how the second product of a reaction can be worked out when the reactant and first product are provided and then they challenge themselves by trying to write three equations. Understanding checks are written into the lesson at regular places to allow the students to check on their understanding.
This lesson has been designed for GCSE students.
A fully-resourced lesson that looks at the reaction of an acid with a metal or a metal carbonate and guides students through writing word and symbol equations to represent these reactions. This lesson includes a lesson presentation (39 slides) and differentiated worksheets.
The lesson begins by challenging the students to spot a pattern when naming the salts that are produced from these reactions. Students are shown how the second word of the salt’s name depends upon the particular acid involved in the reaction and are given opportunities to watch this in worked examples before applying their knowledge to a question. Students will also meet the general formula for the reaction of an acid with a metal carbonate. Moving forwards, a step by step guide is used to show the students how to write fully balanced symbol equations. Time is taken to specifically show them how to write accurate chemical formulae, including those which involve a bracket as is common in this topic. The final task challenges the students to bring all of this information together to write word and symbol equations for three reactions. This worksheet is differentiated two ways so students who require some assistance can still access the work.
This lesson has been written for GCSE students (14 - 16 year olds in the UK)
This is a detailed and engaging lesson presentation (59 slides) that combines exam questions and progress checks along with quiz competition rounds to enable students to assess their understanding of the specification content within topics C1 - 3 of the OCR GCSE Combined Science Gateway A 9 - 1 as can be assessed in Paper 3.
All of the exam questions and progress checks have displayed answers as well as sections where content is recapped so that students can understand how an answer was obtained.
The revision rounds in the competition include “The need to BALANCE”, “Number crazy” and “React to the REACTION”.
This lesson has been designed for GCSE students.
This bundle of 6 engaging and motivating lesson presentations and associated worksheets uses a combination of exam questions, quick tasks and quiz competitions to test the students on their knowledge of the key topics of the Chemistry modules of OCR Gateway A GCSE Combined Science specification. The knowledge of the following modules can be assessed using these lessons:
C1: Particles
C2: Elements, compounds and mixtures
C3: Chemical reactions
C4: Predicting and identifying reactions and products
C5: Monitoring and controlling chemical reactions
C6: Global challenges
This highly detailed and engaging lesson presentation (143 slides) acts as an excellent revision tool for students who are approaching their 1st OCR Gateway A GCSE Chemistry paper which includes the topics found in modules C1 - C3. This lesson uses a range of exam questions with explained answers, quick tasks and quiz competitions (such as UNLOCK the SAFE) to encourage the students to assess their understanding of the specification content and ultimately recognise any areas which will need further attention before the exam.
The topics that are covered in this revision lesson include:
Ionic, covalent and metallic bonding
Atomic structure
Using the Periodic Table
Mole calculations
Balancing symbol equations
Conservation of mass
Pure and impure substances
Chromatography
Calculating energy changes in reactions
Reaction profiles
Endothermic and exothermic reactions
The detail in this presentation means that it is likely to be spread over a number of lessons and small chunks can be used at a time when revision needs to be specific.