Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Monosaccharides (AQA A-level Biology)
GJHeducationGJHeducation

Monosaccharides (AQA A-level Biology)

(0)
Monosaccharides are the monomers from which larger carbohydrates are formed and this lesson describes their structure and roles in living organisms. The detailed and engaging PowerPoint and accompanying resources have been designed to cover the first part of point 1.2 of the AQA A-level Biology specification and looks at alpha-glucose, beta-glucose, galactose, fructose, deoxyribose and ribose. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. Using the molecular formula of glucose as a guide, students will be given the general formula for the monosaccharides and will learn that deoxyribose is an exception to the rule that the number of carbon and oxygen atoms are equal. Moving forwards, students have to study the displayed formula of glucose for two minutes without being able to note anything down before they are challenged to recreate what they saw in a test of their observational skills. At this point of the lesson, the idea of numbering the carbons is introduced so that the different glycosidic bonds can be understood in an upcoming lesson as well as the recognition of the different isomers of glucose. The difference between alpha and beta-glucose is provided and students are again challenged to draw a molecule of glucose, this time for the beta form. The remainder of the lesson focuses on the roles of the 6 monosaccharides and the final task involves a series of application questions where the students are challenged to suggest why ribose could be considered important for active transport and muscle contraction
Phospholipids (AQA A-level Biology)
GJHeducationGJHeducation

Phospholipids (AQA A-level Biology)

(0)
This engaging lesson describes the relationship between the structure and properties of a phopholipid and explains the link to its role in membranes. The PowerPoint has been designed to cover the second part of point 1.3 of the AQA A-level Biology specification and includes constant references to the previous lesson on triglycerides. The role of a phospholipid in a cell membrane provides the backbone to the whole lesson. A quick quiz round called FAMILY AFFAIR, challenges the students to use their knowledge of the structure of a triglyceride to identify the shared features in a phospholipid. This then allows the differences to be introduced, such as the presence of a phosphate group in place of the third fatty acid. Moving forwards, the students will learn that the two fatty acid tails are hydrophobic whilst the phosphate head is hydrophilic which leads into a key discussion point where the class has to consider how it is possible for the phospholipids to be arranged when both the inside and outside of a cell is an aqueous solution. The outcome of the discussion is the introduction of the bilayer which is critical for the lesson in topic 2 on the fluid mosaic model. The final part of the lesson explains how both facilitated diffusion and active transport mean that proteins are found floating in the cell membrane and this also helps to briefly prepare the students for upcoming topic 2 lessons.
Topic 1: Biological molecules (AQA A-level Biology)
GJHeducationGJHeducation

Topic 1: Biological molecules (AQA A-level Biology)

20 Resources
The biological molecules topic is incredibly important, not just because it is found at the start of the course, but also because of its detailed content which must be well understood to promote success with the other 7 AQA A-level Biology topics. Many hours of intricate planning has gone into the design of all of the 20 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked and misconceptions addressed and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions. The following specification points are covered by the lessons within this bundle: Monomers and polymers Condensation and hydrolysis reactions Common monosaccharides Maltose, sucrose and lactose The structure and functions of glycogen, starch and cellulose Biochemical tests using Benedict’s solution for reducing sugars and non-reducing sugars and iodine/potassium iodide for starch The structure and properties of triglycerides and phospholipids The emulsion test for lipids The structure of amino acids The formation of dipeptides and polypeptides The levels of protein structure The biuret test for proteins Enzymes act as biological catalysts The induced-fit model of enzyme action The properties of an enzyme The effect of temperature on the rate of an enzyme-controlled reaction The effect of enzyme and substrate concentration on the rate of an enzyme-controlled reaction The effect of competitive and non-competitive inhibitors on the rate of an enzyme-controlled reaction The structure of DNA and RNA The semi-conservative replication of DNA ATP as the universal energy currency The properties of water and its importance in Biology Inorganic ions Due to the detail of each of these lessons, it is estimated that it will take in excess of 2 months of allocated teaching time to cover the content. If you would like to see the quality of the lessons, download the monomers and polymers, polysaccharides, triglycerides, dipeptides and polypeptides and inorganic ions lessons as these have been shared for free
Diabetes Type I and II
GJHeducationGJHeducation

Diabetes Type I and II

(2)
A detailed and engaging lesson presentation (43 slides) and accompanying worksheets that introduces students to the disease, Diabetes (mellitus), and focusses on the similarities and differences between types I and II. The lesson begins by challenging the students mathematically to get the answers 1 and 2 and then to see whether they can link these numbers to a disease. A variety of tasks, which includes competitions and progress checks, are used to get the students to recognise the differences and state which of the types they belong to. This lesson has been designed for GCSE students and can be used with higher level students. However, a lesson more appropriate for A-level Biology students is named “Diabetes Mellitus Type I and II” and is available in my resources
Edexcel A-level Biology Topic 2 REVISION (Genes and Health)
GJHeducationGJHeducation

Edexcel A-level Biology Topic 2 REVISION (Genes and Health)

(0)
A highly engaging lesson presentation (60 slides) and accompanying worksheets that uses exam questions (with explained answers), quick tasks and competitions to allow students to assess their understanding of the topic of Genes and Health (Topic 2). Students will have fun whilst recognising those areas of the specification which need further attention. Competitions include "Blockbusters" Hotseat" and "james BOND" so that literacy and numeracy skills are tested along with the content knowledge.
The Variables (Scientific Skills)
GJHeducationGJHeducation

The Variables (Scientific Skills)

(0)
An informative lesson presentation (30 slides) that ensures that students know the meaning of the independent, dependent and control variables in an investigation and are able to identify them. Students are challenged to use their definitions to spot the independent and dependent variable from an investigation title. Moving forwards, they are shown how they can use tables and graphs to identify them. The rest of the lesson focuses on the control variables and how these have to be controlled to produce valid results This lesson is suitable for students of all ages studying Science as it is such a key skill
AQA GCSE Biology REVISION LESSONS (Topics 1 - 7)
GJHeducationGJHeducation

AQA GCSE Biology REVISION LESSONS (Topics 1 - 7)

9 Resources
This bundle of 9 engaging and motivating lesson presentations and associated worksheets uses a combination of exam questions, differentiated tasks and quiz competitions to test the students on their knowledge of all of the topics found within the AQA GCSE Biology specification. The knowledge of the content of the following topics is tested in these lessons: Topic 1: Cell Biology Topic 2: Organisation Topic 3: Infection and response Topic 4: Bioenergetics Topic 5: Homeostasis and response Topic 6: Inheritance, variation and evolution Topic 7: Ecology In addition, the bundle contains a Paper 1 and Paper 2 revision lesson where content from all of the topics are covered in these very detailed resources Students will be motivated and engaged by the range of activities whilst they assess which areas need their further attention before the exams. These revision lessons can be used at the end of a topic, before the mock exams or before the actual GCSE terminal exams.
Terminal velocity
GJHeducationGJHeducation

Terminal velocity

(0)
A fast-paced lesson where the main focus is the description of motion with reference to the forces involved. The lesson begins by introducing the term, terminal velocity, and then through consideration of examples in the English language, students will understand that this is the top velocity. The example of a skydiver is used and whilst the story of the dive is told, students are challenged to draw a sketch graph to show the different stages of this journey. An exemplary answer is used to visualise how the motion should be described. Related topics like free body diagrams and resultant forces are brought into the answer in an attempt to demonstrate how they are all interlinked. The next task asks the students to try to describe the remaining parts of the graph and they can assess against displayed mark schemes. The final part of the lesson looks at the two terminal velocities that they were during the skydive and explains that the increased surface area after the parachute was opened led to the second velocity being lower. The last task challenges the students to use this knowledge to answer a difficult exam question. It has been differentiated so those students who need extra assistance can still access the learning. This lesson has been written for GCSE students.
Conservation of energy and energy stores
GJHeducationGJHeducation

Conservation of energy and energy stores

(0)
A fully-resourced lesson that includes a detailed and engaging lesson presentation (33 slides) and question worksheets which are diifferentiated. Together these resources guide students through the tricky topic of the conservation of energy by transfers between energy stores which can often be poorly understood. This lesson has been written for GCSE students, but the law can be taught from an earlier age so this would be suitable for higher ability KS3 lessons. The lesson begins by introducing the key term, energy stores. The understanding of this term is critical for this topic and other lessons on energy transfers and therefore some time is taken to ensure that this key points are embedded into the lesson. Students will learn that stores can be calculated due to the fact that they have an equation associated with them and some of these need to be recalled (or applied) at GCSE. Therefore, the first part of the lesson involves two engaging competitions where students are challenged to recall part of an energy store equation or to recognise which energy store an equation is associated with. Students are given the information about the remaining energy stores, such as chemical and electrostatic. Moving forwards, the main part of the lesson explores the law of the conservation of energy and shows students how they need to be able to apply this law to calculation questions. Students are shown how to answer an example question involving the transfer of energy from a gravity store to a kinetic energy store. A lot of important discussion points come up in this calculation, such as resistive forces and the dissipation of energy, so these are given the attention they need. Students are then challenged to apply their knowledge to a calculation question on their own - this task has been differentiated two ways so that all students can access the learning. The final slide of the lesson looks at the different ways that energy can be transferred between stores but those are covered in detail in separate lessons.
Loss of biodiversity
GJHeducationGJHeducation

Loss of biodiversity

(0)
A thought-provoking and discussion-based lesson which looks at the different ways that biodiversity is being lost across the World. This lesson has been designed for GCSE students and includes a detailed lesson presentation (31 slides) and accompanying worksheet. The lesson begins by challenging the students to use their Biological knowledge to get to a quantitative answer, which is 80%, and then getting them to consider where this much biodiversity would be found around the World. The rainforest plays a key role in the lesson as important discussion topics such as deforestation can easily be related to this area. A range of tasks and discussion points are used to look at the different ways that humans are causing a loss in biodiversity. As well as deforestation, agriculture and eutrophication are explored and related back to the Science. This can be a word heavy topic and therefore a number of quick quiz competitions have been written into the lesson to maintain engagement and energy levels. In addition, progress checks are involved at regular points, including those which challenge mathematical skills in manipulating data. This allows students to constantly assess their understanding.
Mitosis
GJHeducationGJHeducation

Mitosis

(0)
A detailed lesson which looks at the type of cell division known as mitosis and aims to ensure that students understand that it leads to the production of genetically identical daughter cells. In order to understand this type of cell division and any related topic such as meiosis, students have to be confident with the use of terms like diploid. In addition to this, time is taken to introduce them to a way of considering the quantity of DNA within a cell in terms of n. If they are able to use this correctly, then no matter the organism which is involved in a mitosis exam question, they will be able to answer successfully. Discussion points and progress checks are written into the lesson at regular intervals so their understanding can be assessed. The last part of the lesson provides the students with an opportunity to apply their knowledge of mitosis to a range of exam questions and they can assess against the displayed mark schemes. This lesson has been designed for GCSE students (14 - 16 year olds in the UK) but is also appropriate for older students who want to recap on the key details of the division before extended knowledge is added.
Controlling body temperature
GJHeducationGJHeducation

Controlling body temperature

(0)
A fully-resourced lesson which includes a detailed and engaging lesson presentation (36 slides) and an assistance worksheet for those students who feel that they need extra assistance with the final description. This lesson looks at how body temperature is controlled in humans through a homeostatic mechanism and includes details of a negative feedback loop. The lesson begins with a three pronged task where students have to use the clues to come up with the word homeostasis and the number 37 and then see if they can make the link in the human body. Time is taken to ensure that students recognise why maintaining the temperature around this set-point is so crucial in terms of the effectiveness of enzymes in reactions. There is a real focus on key terminology throughout such as thermoreceptors and hypothalamus and guidance is given on how to use these terms accurately. Discussion points and progress checks are written into the lesson at regular intervals so that students are encouraged to challenge the Biology whilst being able to assess their understanding. They are shown how to write a detailed description of the response to an increase in temperature so they are able to form their own description of the response to a fall in temperature. This lesson has been written for GCSE students but is perfectly suitable for older students studying thermoregulation at A-level and want to revisit the knowledge.
Choosing reaction conditions (REVERSIBLE REACTIONS)
GJHeducationGJHeducation

Choosing reaction conditions (REVERSIBLE REACTIONS)

(2)
A thought-provoking lesson which explores why certain conditions are chosen for reversible reactions. Throughout this lesson, students are challenged to think about the topic in three ways. Of course, they have to consider the chosen conditions from a Scientific angle by knowing how temperature and pressure affect the position of the equilibrium. They must also think about the business (and health) side of the argument by recognising that increased pressures are both dangerous and expensive. Finally, they are taught recognise how the chosen conditions are in fact a compromise which has taken both the Science and business into account. Students are guided through the choice of conditions for the production of methanol so that they can apply their knowledge to the production of ammonia by the Haber process. This lesson has been designed for GCSE students.
Topic B1: Cell Biology (AQA Trilogy GCSE Combined Science)
GJHeducationGJHeducation

Topic B1: Cell Biology (AQA Trilogy GCSE Combined Science)

10 Resources
This bundle of 10 lessons covers the majority of the content in Topic B1 (Cell Biology) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include: Cells Microscopy Cell differentiation and specialisation Chromosomes and mitosis Stem cells Diffusion Osmosis Active transport Exchange surfaces Exchanging substances All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic C1: Particles (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic C1: Particles (OCR Gateway A GCSE Combined Science)

6 Resources
This bundle of 6 lessons covers the majority of the content in Topic C1 (Particles) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: States of matter Chemical and physical changes Development of the atom Atomic structure Isotopes Ions All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B1.2: What happens in cells? (OCR Gateway A GCSE Biology)
GJHeducationGJHeducation

Topic B1.2: What happens in cells? (OCR Gateway A GCSE Biology)

3 Resources
This bundle of 3 lessons covers all of the content in the sub-topic B1.2 (What happens in cells) of the OCR Gateway A GCSE Biology specification. The topics covered within these lessons include: DNA Transcription and translation Enzymes Enzyme actions All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic C4.2: Identifying the products of chemical reactions (OCR Gateway A GCSE Chemistry)
GJHeducationGJHeducation

Topic C4.2: Identifying the products of chemical reactions (OCR Gateway A GCSE Chemistry)

4 Resources
This bundle of 4 lessons covers all of the content in the sub-topic C4.2 (Identifying the products of chemical reactions) of the OCR Gateway A GCSE Chemistry specification. The topics covered within these lessons include: Detecting gases Detecting cations Detecting anions Instrumental methods of analysis All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Properties of waves
GJHeducationGJHeducation

Properties of waves

(0)
This is a concise, fast-paced lesson designed to cover the key terminology associated with the waves topic at GCSE and ensure that students are able to recognise and use these terms in context. A number of terms, such a transverse, are known by students but rarely correctly used in written descriptions. Therefore, through a range of tasks and quick competitions, students will meet these terms, learn how to define them and then be asked to apply their knowledge to understanding check questions. This lesson has been written in conjuction with the lesson titled “Wave velocity” and students are challenged to keep an A - Z of key terms during both lessons so they can challenge themselves during revision points.
Topic B3: Genetics (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic B3: Genetics (Edexcel GCSE Combined Science)

6 Resources
This bundle of 6 lessons covers a lot of the content in Topic B3 (Genetics) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: Advantages and disadvantages of asexual reproduction Advantages and disadvantages of sexual reproduction The role of meiosis The structure of DNA Understanding and using genetic terminology Monohybrid inheritance Sex determination The causes of variation All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B1: Cell-level systems (OCR Gateway A GCSE Biology)
GJHeducationGJHeducation

Topic B1: Cell-level systems (OCR Gateway A GCSE Biology)

9 Resources
This bundle of 10 lessons covers the majority of the content in Topic B1 (Cell-level systems) of the OCR Gateway A GCSE Biology specification. The topics covered within these lessons include: Plant and animal cells Bacterial cells Light microscopy Electron microscopy DNA Transcription and translation Enzymes Enzyme actions Aerobic respiration Anaerobic respiration Photosynthesis Limiting factors All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.