Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Efficiency
GJHeducationGJHeducation

Efficiency

(1)
An engaging lesson presentation (28 slides) and accompanying worksheet, which together look at how to calculate efficiency and explores how efficiency can be increased by reducing the ways that energy is transferred to less useful stores. The lesson begins by looking at the key term, dissipated, and ensuring that students understand that energy being dissipated to a thermal energy store is one of the main reasons why efficiency will be low. Moving forwards, students are introduced to the equation to calculate efficiency and shown how to leave the answer as a decimal or percentage. Mathematical skills are challenged when calculating the efficiency as a number of units have to be converted. The rest of the lesson looks at a range of methods that can be used to reduce losses. Students will work with the teacher to understand how lubrication works and then a homework task gets them to explore how insulation in homes reduces heat losses. This lesson has been designed for GCSE students.
Sound waves
GJHeducationGJHeducation

Sound waves

(0)
An engaging lesson presentation that looks at how the amplitude and frequency of a sound wave can change. The lesson uses a range of sounds from recordings and challenges the students to draw the sound waves that would have been produced. In order to understand this topic, it is essential that the key terminology is understood and can be used in the correct context. Therefore, the start of the lesson focuses on wavelength and frequency and then longitudinal and challenges the students to recognise that these could all be related to sound waves. Moving forwards, students will hear a recording and then read a music “critique” that uses the key terminology so that can link the sounds to the change in shape of the waves. The final part of the lesson involves them drawing how the different sound waves would change from the control one. This lesson has been designed for GCSE students.
Topic B5: Health, disease and development of medicines (Edexcel GCSE Biology)
GJHeducationGJHeducation

Topic B5: Health, disease and development of medicines (Edexcel GCSE Biology)

10 Resources
This bundle of 10 lessons covers a lot of the content in Topic B5 (Health, disease and development of medicines) of the Edexcel GCSE Biology specification. The topics covered within these lessons include: Health The difference between communicable and non-communicable diseases Pathogens Common infections The spread of diseases and the prevention The spread of STIs Plant defences Identification of plant diseases The physical and chemical defences of the human body The use of antibiotics Developing new medicines Monoclonal antibodies Non-communicable diseases Treating cardiovascular disease All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P4: Waves (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic P4: Waves (Edexcel GCSE Combined Science)

4 Resources
This bundle of 4 lessons covers the majority of the content in Topic P4 (Waves) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: Using the terms frequency and wavelength Using the terms amplitude, period and velocity Longitudinal and transverse waves Calculating wave speed Refraction of waves All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic C6: Energy changes in chemical reactions
GJHeducationGJHeducation

Topic C6: Energy changes in chemical reactions

2 Resources
This bundle of 2 lessons covers all of the content in Topic C6 (Energy changes in chemical reactions) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specification points covered within these lessons include: Describe the meaning of endothermic and exothermic reactions Describe bond breaking and bond forming Labelling and interpreting energy level diagrams All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
Topic P5.1:  Wave behaviour (OCR Gateway A GCSE Physics)
GJHeducationGJHeducation

Topic P5.1: Wave behaviour (OCR Gateway A GCSE Physics)

4 Resources
This bundle of 4 lessons covers the majority of the content in sub-topic P5.1 (Wave behaviour) of the OCR Gateway A GCSE Physics specification. The topics and specification points covered within these lessons include: Waves and their properties Wave velocity Sound properties and uses All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
CIE IGCSE Biology Topic 11 & 12 REVISION (Gas exchange in humans & respiration)
GJHeducationGJHeducation

CIE IGCSE Biology Topic 11 & 12 REVISION (Gas exchange in humans & respiration)

(0)
This revision resource has been designed to cover the content in both topic 11 (Gas exchange) and topic 12 (Respiration) of the CIE IGCSE Biology specification for examination in June and November 2020 and 2021. The topics have been combined because of the huge crossover and the aim was to encourage students to see those connections and to make the Biological links. The resource contains an engaging and detailed PowerPoint (77 slides) and associated worksheets, some of which have been differentiated to provide assistance for those students who need it. Included in the resource are exam questions, quick tasks and quiz competitions which try to cover as much content as possible with the following areas receiving particular attention: The internal and external structure of the trachea The structure of the alveoli to allow efficient gas exchange The role of the ribs, intercostal muscles and diaphragm in ventilation The differences in composition between inspired and expired air Aerobic respiration in seeds The uses of energy in the body of humans Anaerobic respiration and the oxygen debt This resource contains a large emphasis on the mathematical element of the Biology course. Students are guided through key skills such as percentage change and then challenged to apply
CIE IGCSE Combined Science C4 REVISION (Stoichiometry)
GJHeducationGJHeducation

CIE IGCSE Combined Science C4 REVISION (Stoichiometry)

(0)
This revision resource contains an engaging PowerPoint (56 slides) and associated worksheets, one of which has been differentiated two ways to allow students of differing abilities to access the work. The range of activities cover the content of Topic C4 (Stoichiometry) of the CIE IGCSE Combined Science specification, for examination in June and November 2020 and 2021. The aim was to cover as much of the content as possible but the following topics have received particular attention: Naming compounds containing 2 or 3+ elements Constructing word equations for general chemical reactions Monatomic or diatomic molecules Writing formulae for ionic compounds using the charges on the ions Balancing symbol equations Writing fully balanced chemical symbol equations with state symbols Students are given hints and guidance throughout the lesson so they can build confidence in the lead up to an end of topic test, mocks or the terminal exams.
CIE IGCSE Combined Science C5 REVISION (Electricity and chemistry)
GJHeducationGJHeducation

CIE IGCSE Combined Science C5 REVISION (Electricity and chemistry)

(0)
This is a concise revision resource which has been designed to cover the crucial details of topic C5 (Electricity and chemistry) of the CIE IGCSE Combined Science specification, for examination in June and November 2020 and 2021. The topic of electrolysis is commonly assessed in the examinations so time was taken during the design to ensure that understanding is constantly checked so that any misconceptions are addressed. The following content receives particular attention in this revision lesson: The use of the terms electrolyte, electrode, cathode and anode Understanding that solid ionic compounds cannot be used in electrolysis, but only electrolytes when molten or in aqueous solution The attraction of positive ions to the cathode and the gain of electrons The attraction of negative ions to the anode and the loss of electrons Predicting the products at the electrodes The lesson finishes with a summary task about the electrolysis of aluminium oxide where students have to apply their knowledge. This sheet has been differentiated two ways so that students of different abilities are able to complete the task
CIE IGCSE Combined Science REVISION LESSONS (Chemistry topics)
GJHeducationGJHeducation

CIE IGCSE Combined Science REVISION LESSONS (Chemistry topics)

7 Resources
This bundle of 7 revision lessons covers 7 of the 12 Chemistry topics that are found on the CIE IGCSE Combined Science specification for examination in June and November 2020 and 2021. Each of the lessons has been designed to include exam questions, differentiated tasks and quiz competitions that challenge the students on their recall of the content and their ability to apply knowledge. Students will be engaged and motivated by the range of activities whilst recognising those areas that need further attention. The following topics are included in this bundle: Topic C2: Experimental techniques Topic C3: Atoms, elements and compounds Topic C4: Stoichiometry Topic C5: Electricity and chemistry Topic C9: Periodic Table Topic C11: Air and water Topic C12: Organic chemistry If you like these lessons, please look at my revision lessons for the Biology and Physics topics of the Combined Science specification as well as the IGCSE Biology, Chemistry and Physics
CIE IGCSE Combined Science B3 REVISION (Biological molecules)
GJHeducationGJHeducation

CIE IGCSE Combined Science B3 REVISION (Biological molecules)

(0)
This concise, engaging revision lesson has been designed to include activities that will motivate the students whilst they assess their understanding of topic B3 (Biological molecules) of the CIE IGCSE Combined Science specification. An understanding of biological molecules is fundamental to the understanding of a lot other Biology topics and this lesson has attempted to make the links between the different areas. The range of activities which include exam questions, quick tasks and quiz competitions have been written to cover as much of the content as possible but the following topics have received particular attention: The chemical elements in carbohydrates The formation of starch and glycogen from glucose The iodine test for starch Lipids are formed of fatty acids and glycerol Investigational skills The ethanol emulsion test for lipids This resource includes a PowerPoint (27 slides) and a worksheet with a task about the digestion of milk fat so students can recognise the components of lipids
The eye (AQA GCSE Biology)
GJHeducationGJHeducation

The eye (AQA GCSE Biology)

(0)
This fully-resourced lesson has been designed to cover the content found in specification point 5.2.3 (The eye) of topic 5 of the AQA GCSE Biology specification. This resource contains an engaging and detailed PowerPoint (46 slides) and accompanying worksheets, some of which have been differentiated to help students of different abilities to take on the task. The lesson begins with a game of IMPOSSIBLE (shown in the picture) where students are challenged to pick out the names of the 7 structures of the eye which the specification states they have to be able to identify on a diagram. Students are given the functions of the cornea and the sclera to guide them at the start of the labelling task before they have to use their previous knowledge of the nervous system to write a function for the optic nerve. Literacy and numeracy skills are tested throughout the lesson and the next round of the quiz challenges them to use synonyms to recognise the key terms of adaptation and accommodation. Time is taken to focus on the process of accommodation so that students can see how the ciliary muscles and suspensory ligaments interact to change the shape of the lens and allow both near and distant objects to be seen clearly. This takes the lesson nicely into the next section where the conditions of myopia and hyperopia are considered. Again, the students are challenged on their recognition of Biology terminology to spot that these are the medical names for short and long-sightedness. Students are guided through the correction of myopia before being challenged to write a letter to the mother of a girl who suffers from hyperopia, explaining how the lens is used to correct the defect. As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but can be used with younger students who are keen to learn about the eye or with A-level students who need to go back over the key points.
Thyroxine and the control of metabolic rate (Edexcel GCSE Biology & Combined Science HT)
GJHeducationGJHeducation

Thyroxine and the control of metabolic rate (Edexcel GCSE Biology & Combined Science HT)

(0)
This resource contains a concise, engaging PowerPoint and accompanying worksheets which together cover the content of specification point 7.3 (Thyroxine and the control of metabolic rate as an example of negative feedback) as found on the Edexcel GCSE Biology & Combined Science higher tier specifications. Over the course of the lesson, students will learn about the effects of the release of thyroxine, how this release is regulated by the pituitary gland and hypothalamus and also will understand how this control is an example of negative feedback. Due to the obvious connection to the previously learned endocrine system topic, regular opportunities are taken to check on this prior knowledge and these work well with the understanding checks which allow the students to assess their progress. A quiz competition called FROM NUMBERS 2 LETTERS is used to introduce the key abbreviations in a fun and memorable way, whilst the key details of the content is always at the forefront of the design of the lesson. This lesson has been written for students studying the higher tier of the Edexcel GCSE Biology or Combined Science courses but it is also suitable for use with A-level students who need to recall the key details of these two hormones
The components of a REFLEX ARC (WJEC GCSE Biology)
GJHeducationGJHeducation

The components of a REFLEX ARC (WJEC GCSE Biology)

(0)
This lesson resource contains a engaging PowerPoint and accompanying worksheets, all of which have been designed to cover the content of specification point 2.5 (d) on the WJEC GCSE Biology specification. This specification point states that students should know the components of a reflex arc. This lesson builds on the knowledge from the previous lesson on the structure and function of the nervous system (2.5b). The lesson begins by challenging the students to come up with the word reflex having been presented with 5 other synonyms of the word automatic. This leads into a section of discovery and discussion where students are encouraged to consider how a reflex arc can be automatic and rapid despite the fact that the impulse is conducted into the CNS like any other reaction. Students will be introduced to the relay neurone and will learn how this provides a communication between the sensory neurone and the motor neurone and therefore means that these arcs do not involve processing by the brain. Moving forwards, the main task of the lesson challenges the students to write a detailed description of a reflex arc. Assistance is given on the critical section which involves the relay neurone in the spinal cord before they have to use their knowledge of nervous reactions to write a paragraph before and after to complete the description. As a final task, students will have to compare the structure and functions of sensory, motor and relay neurones. Although this lesson has been designed for students studying on WJEC GCSE Biology course, it is also suitable for older students who are studying reflex reactions at A-level and need to recall the main details.
The control of BLOOD GLUCOSE (WJEC GCSE Biology)
GJHeducationGJHeducation

The control of BLOOD GLUCOSE (WJEC GCSE Biology)

(0)
This concise lesson presentation and accompanying worksheet have been designed to cover the content of point 2.5 (h) of the WJEC GCSE Biology specification which states that students should understand the need to keep blood glucose levels within a constant range. Homeostasis is a running theme throughout the 2.5 topic so this lesson builds on knowledge from earlier topics to ensure that there is a deep understanding. The lesson begins by introducing glucose and a quiz competition will lead to the range 4 - 7, so that students can recognise that this is the set range within which this molecule’s concentration must be kept. Time is taken to look at some of the health problems that are associated with an increase in concentration above this upper limit and the general Biological knowledge of the students is tested with some questions. Moving forwards, the main task of the lesson involves a step by step guide through the stages in the response to a high blood glucose concentration and shows the students how the release of insulin leads to the uptake of glucose from the blood and a conversion to glycogen by the liver and muscle cells. The summary task at the end challenges the students to bring all of the information together to write a detailed description of this response and this activity is differentiated to aid those students who need extra assistance. This lesson has been designed for students studying the WJEC GCSE Biology course but could be used with A-level students who are beginning this topic and need to recall the key details.
Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Combined Science)

8 Resources
Each of the 8 lessons in this bundle have been written to include a wide range of activities that will engage and motivate the students whilst giving them regular oppotunities to assess their understanding of the current topic as well as checking on their knowledge of any previously linked topics. Each lesson has been written for students studying the Edexcel GCSE Combined Science course and the following specification points are covered by the lessons in this bundle: 7.1: Endocrine glands and the hormones they secrete 7.3: The control of metabolic rate by thyroxine as an example of negative feedback 7.4 & 7.5: The stages and the interactions of the hormones in the menstrual cycle 7.6 & 7.7: Barrier and hormonal contraception, the menstrual cycle and preventing pregnancy 7.8: The use of hormones in Assisted Reproductive Technology 7.9: The importance of homeostasis 7.13 & 7.14: The control of blood glucose concentration by the release of insulin and glucagon 7.15 & 7.16: The causes and control of diabetes type I and II Each lesson contains a detailed and engaging PowerPoint and accompanying worksheets, most of which are differentiated to enable students of different abilities to access the work.
The structures and functions of sensory, relay and motor neurones (OCR A-level Biology A)
GJHeducationGJHeducation

The structures and functions of sensory, relay and motor neurones (OCR A-level Biology A)

(0)
This is a fully-resourced lesson which covers the detail of point 5.1.3 (b) of the OCR A-level Biology A specification which states that students should be able to apply their understanding of the structures and functions of sensory, relay and motor neurones as well as the differences between myelinated and unmyelinated neurones. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The students will be able to compare these neurones based on their function but also distinguish between them based on their structural features. Time is taken to look at the importance of the myelin sheath for the sensory and motor neurones. Students will be introduced to the need for the entry of ions to cause depolarisation and will learn that this is only possible at the nodes of Ranvier when there is a myelin sheath. Key terminology such as saltatory conduction is introduced and explained. The final task involves a comparison between the three neurones to check that the students have understood the structures and functions of the neurones. Throughout the lesson, links are made to the upcoming topic of the organisation of the nervous system (5.1.5) and students will be given additional knowledge such as the differences between somatic and autonomic motor neurones. This lesson has been designed for students studying on the OCR A-level Biology A course.
The Pacinian corpuscle as a SENSORY RECEPTOR (AQA A-level Biology)
GJHeducationGJHeducation

The Pacinian corpuscle as a SENSORY RECEPTOR (AQA A-level Biology)

(1)
This lesson has been designed to cover the content of the 1st part of specification point 6.1.2 of the AQA A-level Biology specification which states that students should know the basic structure of a Pacinian corpuscle and be able to use its function as a representation of sensory receptors. By the end of the lesson students will understand that sensory receptors respond to specific stimuli and how a generator potential is established. The lesson begins by using a quiz to get the students to recognise the range of stimuli which can be detected by receptors. This leads into a task where the students have to form 4 sentences to detail the stimuli which are detected by certain receptors and the energy conversion that happen as a result. Students will be introduced to the idea of a transducer and learn that receptors always convert to electrical energy which is the generator potential. The remainder of the lesson focuses on the Pacinian corpuscle and how this responds to pressure on the skin. The involvement of sodium and potassium ions is introduced so discussions on how the membrane potential changes from resting potential in the establishment of a generator potential are encouraged. This lesson has been written for students studying on the AQA A-level Biology course and ties in nicely with other uploaded lessons which cover the content of topic 6
CIE International A-level Biology TOPIC 13 REVISION (Photosynthesis)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 13 REVISION (Photosynthesis)

(0)
This engaging REVISION LESSON has been designed to cover the content of topic 13 (Photosynthesis) of the CIE International A-level Biology specification. Filled with a wide range of activities, that include exam questions with explanations, quick tasks and quiz competitions, the students will be motivated whilst they assess their ability to apply their knowledge. Due to the obvious importance of this reaction, assessment questions are extremely common and so a deep understanding of this topic is key to success and the lesson has been designed to cover the important ideas. The following sub-topics have received particular attention in this lesson: Photophosphorylation An outline of cyclic and non-cyclic photophosphorylation Photolysis of water The light dependent reaction The structure of the chloroplast and the site of the different reactions The Calvin cycle The limiting factors of photosynthesis Investigating the effect of light intensity using DCPIP as a redox indicator and a Hill suspension The effect of temperature on the rate There is a focus on terminology throughout the lesson so that students are comfortable with the terms that will be encountered in exam questions. Revision lessons on the other topics of the specification are uploaded so please take a moment to look at those too
CIE International A-level Biology TOPIC 4 REVISION (Cell membranes and transport)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 4 REVISION (Cell membranes and transport)

(0)
This detailed and engaging REVISION LESSON has been written to cover the content of topic 4 (Cell membranes and transport) of the CIE International A-level Biology specification. The lesson consists of a PowerPoint that contains exam questions, differentiated tasks and quiz competitions and is accompanied by worksheets with further activities. The competitions act to engage the students whilst they assess their understanding of the content and challenges their ability to apply this knowledge to potentially unfamiliar situations. The lesson was designed to cover as much of the specification content as possible but the following sub-topics have received particular attention: Active transport and its applications in animals and plants Facilitated diffusion and the use of channel and carrier proteins The factors that affect diffusion as demonstrated by gas exchange at the alveoli Exocytosis Water potential and the movement of water by osmosis The effect of solutions of different water potentials on animal and plant tissue The fluid mosaic model The plasma cell membrane and the function of its components As well as covering the current topic, the design of this lesson has been conscious to include future topics. For example, a cholinergic synapse was used to challenge the students to spot examples of facilitated diffusion, simple diffusion, active transport and exocytosis. Revision lessons for the other 18 topics are uploaded on TES or are in the process of being uploaded.