Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Isotopes (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Isotopes (Edexcel GCSE Chemistry & Combined Science)

(0)
This lesson describes the meaning of an isotope and explains how to calculate the relative atomic mass using the relative masses and abundance of its isotopes. The PowerPoint and accompanying resources have been designed to cover the detail of points 1.9, 1.11 & 1.12 of the Edexcel GCSE Chemistry & Combined Science specifications. The early topic 1 lessons covered the meaning of the atomic and mass number and the calculation of the number of subatomic particles, and this lesson begins by challenging the recall of this key information. Moving forwards, a quick quiz competition is used to introduce the term “isotope” and then the students have to calculate the number of subatomic particles in K-39, K-40 and K-41 before using their answers to complete a definition about these types of substances. Time is taken to explain how isotopes are represented in standard annotation and the importance of the mass number is emphasised. A series of application questions are used to challenge them to apply their understanding and knowledge and mark schemes are embedded into the PowerPoint to allow the students to self-mark. The remainder of the lesson explains how the existence of isotopes results in some elements having relative atomic masses that are not whole numbers and then explains how these masses can be calculated. Once an example is demonstrated, the students are again given the chance to apply their understanding to a series of questions, and this exam question worksheet has been differentiated two ways
Protons, neutrons & electrons in atoms & ions (AQA GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Protons, neutrons & electrons in atoms & ions (AQA GCSE Chemistry & Combined Science)

(0)
This lesson explains how to calculate the number of protons, neutrons and electrons in atoms and ions when given the atomic and mass numbers. The PowerPoint and accompanying resources are part of the second lesson in a series of 3 lessons which have been designed to cover the content of specification points 1.1.4, 1.1.5 & 1.1.6 of the AQA GCSE Chemistry and Combined Science specifications. The lesson begins by challenging the students to put the chemical symbols for astatine, oxygen, iodine and carbon together to form the word atomic. Time is taken to explain the meaning of the atomic number and to emphasise how the number of protons in the nucleus is unique to atoms of that element. The students will learn that as the number of electrons is always the same as the number of protons in an atom, the atomic number can be used to calculate the numbers of both of these particles. Moving forwards, the mass number is considered and having been given the number of neutrons in a lithium atom, the students are challenged to articulate how the mass number and atomic number were used in this calculation. A series of worked examples are done as a class before the students are given the opportunity to challenge their understanding The remainder of the lesson focuses on ions and how the number of protons, neutrons and electrons are calculated in these substances. Initially, the students are challenged to use their knowledge of the charge of an atom to deduce that ions must have differing numbers of protons and electrons. The standard annotation for ions are introduced and explained and a series of exam questions are then used to check understanding. Mark schemes for each of these final questions is embedded into the PowerPoint and the worksheet has been differentiated two ways
Heart and circulatory system (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Heart and circulatory system (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes how the structure of the heart and the circulatory system is related to its function. The PowerPoint lesson and accompanying resources have been designed to cover the detail of point 8.8 of the Edexcel GCSE Biology and Combined Science specifications and includes descriptions of the role of the major blood vessels, the heart valves, and the relative thickness of the chamber walls. The lesson starts with an extract from Friends and challenges the students to recognise that full sized aortic pumps is a thesaurus version of big hearts. This reiterates the basic function of the heart that was met at KS2 and KS3 and moving forwards, the students will learn that it is the contraction of the cardiac muscle in the walls of the four heart chambers that allows this to happen. Students are provided with a diagram throughout the lesson which will be annotated as new structures are encountered and they begin by labelling the two atria and ventricles. The focus of the lesson is the relationship between structure and function so time is taken to consider the different roles of the atria and ventricles, as well as the right ventricle versus the left ventricle. Students will be able to observe from their diagram that the left ventricle has the thickest wall and they will be challenged to explain why later in the lesson once more detailed knowledge has been added. The next part of the lesson introduces the pulmonary artery and vein and a task challenges the students to consider the relationship between the heart and the lungs, and their prior knowledge of the adaptations of the alveoli is also tested. The remainder of the lesson discusses the double circulatory system and the heart valves. Understanding checks are found throughout the lesson and mark schemes are embedded into the PowerPoint to allow the students to assess their progress.
Atomic structure (AQA GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Atomic structure (AQA GCSE Chemistry & Combined Science)

3 Resources
This bundle of three lessons has been designed to cover the detail in points 1.1.4, 1.1.5 & 1.1.6 of the AQA GCSE Chemistry & Combined Science specifications which concern atomic structure. The lessons are fully resourced and are filled with a range of activities which will engage and motivate the students whilst challenging them on their current understanding as well as checking on their ability to make links to content covered earlier in topic 1. If you would like to see the quality of these resources then download the size and mass of atoms lesson as this has been shared for free.
Speed and velocity (Edexcel GCSE Physics & Combined Science)
GJHeducationGJHeducation

Speed and velocity (Edexcel GCSE Physics & Combined Science)

(0)
This lesson explains that velocity is speed in a stated direction and then describes how to use the distance and time to calculate speed. The PowerPoint and accompanying resources have been designed to cover points 2.5 & 2.6 of the Edexcel GCSE Physics & Combined Science specifications. The lesson begins with a prior knowledge check, where the students are challenged to use their understanding of the last lesson on scalar and vector quantities to complete a definition about velocity. This vector quantity is involved in the calculation of acceleration, momentum and in an equation of motion and this is briefly introduced to the students. Moving forwards, they are challenged to recall the equation to calculate speed that should have been met at KS3 as well as in Maths. The remainder of the lesson focuses on the use of this equation as well as rearrangements to change the subject. A series of step by step guides are used to model the workings required in these calculations and then the students have to apply their understanding to a series of exam questions. Mark schemes for each of the questions are embedded in the PowerPoint and the question worksheet has been differentiated two ways to provide assistance to students who are finding it difficult.
Topic P2: Motion and forces (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic P2: Motion and forces (Edexcel GCSE Combined Science)

10 Resources
This bundle of 10 lessons covers the majority of the content in Topic P2 of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: Scalar and vector quantities Velocity Calculating speed Distance-time graphs Recall and use the acceleration equation Use the equations of motion equation Velocity-time graphs Recall some everyday speeds Use the equation to calculate weight The relationship between weight and gravitational field strength Recall and use the equation for momentum Momentum in collisions The factors affecting stopping distances All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic C9: Separate Chemistry 2 (Edexcel GCSE Chemistry)
GJHeducationGJHeducation

Topic C9: Separate Chemistry 2 (Edexcel GCSE Chemistry)

10 Resources
This bundle of 7 lessons covers the majority of the content in Topic C9 (Separate Chemistry 2) of the Edexcel GCSE Chemistry specification. The topics covered within these lessons include: Detecting cations Detecting anions Alkanes as saturated hydrocarbons Alkenes as unsaturated hydrocarbons Testing with bromine water Complete combustion of hydrocarbons Polymers Biological polymers Alcohols Carboxylic acids Production of ethanol Nanoparticles All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Osmosis (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

Osmosis (AQA GCSE Biology & Combined Science)

(0)
This concise lesson has been designed to cover the content found in specification point 4.1.3.2 (Osmosis) of topic 1 of the AQA GCSE Biology & Combined Science specifications. This resource contains an engaging PowerPoint (23 slides) and accompanying worksheets, some of which have been differentiated to help students of different abilities to take on the task at hand. The lesson begins with the introduction of the term, osmosis, and then students are challenged to use their knowledge of diffusion to write a definition for this method of movement of water molecules. A series of questions which check understanding are included at this early point of the lesson to ensure that the key points are known and any misconceptions are quickly addressed. Students are also challenged with an application question as these can often cause them the most problems. Moving forwards, the rest of the lesson focuses on an osmosis investigation. Scientific skills are tested during a range of tasks as well as numerical skills and guidance is given on how to calculate percentage change. As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but can be used with younger students who are keen to learn about osmosis
Control of body temperature (AQA GCSE Biology)
GJHeducationGJHeducation

Control of body temperature (AQA GCSE Biology)

(0)
The engaging Powerpoint and accompanying worksheet which come as part of this lesson resource have been designed to cover specification point 5.2.4 (Control of body temperature) as detailed in the AQA GCSE Biology specification. A wide range of activities which include Biology and Maths tasks and quiz competitions are interspersed with understanding and prior knowledge checks so that students are engaged and motivated whilst learning the key content in a memorable way and checking their progress. Students will learn that the body temperature is maintained at 37 degrees celsuis by a homeostatic control system called thermoregulation and will be challenged to recall the topic of enzymes to explain why this is so important. Time is taken to look at the responses brought about the effectors such as vasodilation and shivering and students will recognise how these lead a decrease or increase in body temperature back to the set point. Links are also made between the Sciences so that there is a deeper understanding of exactly why sweating cools the body down. This lesson has been designed for students studying the AQA GCSE Biology course but is suitable for older students who are studying Biology at A-level and need to recall the key details of thermoregulation.
Homeostasis (WJEC GCSE Biology)
GJHeducationGJHeducation

Homeostasis (WJEC GCSE Biology)

(0)
This fully-resourced lesson has been designed to cover the content found in specification point 2.5 (f) of the WJEC GCSE Biology specification which states that students should understand why animals need to regulate the conditions inside their bodies. This resource contains an engaging and detailed PowerPoint (45 slides) and accompanying worksheets The lesson begins by challenging the student’s literacy skills as they are asked to recognise the key term, optimum, from 6 of its’ synonyms. Moving forwards, a range of quiz competitions are used to introduce the term homeostasis and to provide a definition for this key process. Students are given a newspaper article about water and blood glucose so they can recognise 2 conditions which are controlled in the human body. The next part of the lesson looks at the importance of maintaining the levels of water and glucose by considering the medical problems that could arise if they move away from the optimum levels. Students will learn that body temperature is also controlled and links are made to earlier knowledge as they have to explain why an increase in temperature above the set point would be an issue because of the denaturation of enzymes. The rest of the lesson looks at the three parts that are included in all control systems before a final quiz round introduces the receptors, coordination centre and effectors in the control of body temperature. As stated at the top, this lesson has been designed for GCSE-aged students who are studying the WJEC GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the process in more detail
The structure and function of the EYE (WJEC GCSE Biology)
GJHeducationGJHeducation

The structure and function of the EYE (WJEC GCSE Biology)

(0)
This engaging and detailed resource, which contains a PowerPoint and accompanying worksheets, has been designed to cover the content of point 2.5 (e) of the WJEC GCSE Biology specification that states that students should know the structure and functions of the following 9 parts of the eye: sclera cornea pupil iris lens choroid retina blind spot optic nerve The lesson was designed to include a wide range of activities to engage and motivate the students so that the knowledge is more likely to stick. These activities include Have you got an EYE for the IMPOSSIBLE, as shown in the cover image, where students have to pick out the 8 structures of the human eye from the list and avoid the IMPOSSIBLE answer. There is also a particular focus on the light-sensitive cells in the retina, the pupil reflex and the change in the shape of the lens to accommodate near and distant objects. This lesson has been designed for students studying the WJEC GCSE Biology course but is suitable for both older and younger students who may be studying the eye.
Negative feedback (AQA GCSE Biology & Combined Science HT)
GJHeducationGJHeducation

Negative feedback (AQA GCSE Biology & Combined Science HT)

(0)
This resource contains an engaging PowerPoint and an accompanying worksheet which together cover the content of specification point 5.3.7 (Negative feedback) as found on the AQA GCSE Biology & Combined Science higher tier specifications. Over the course of the lesson, students will learn about the effects of the release of adrenaline and thyroxine and will understand how the latter is controlled by negative feedback. Due to the obvious connection to the previously learned endocrine system topic, regular opportunities are taken to check on this prior knowledge and these work well with the understanding checks which allow the students to assess their progress. Quiz competitions which include SAY WHAT YOU SEE and FROM NUMBERS 2 LETTERS are used to introduce key terms and abbreviations in a fun and memorable way, whilst the key details of the content is always at the forefront of the design of the lesson. This lesson has been written for students studying the higher tier of the AQA GCSE Biology or Combined Science courses but it is also suitable for use with A-level students who need to recall the key details of these two hormones
Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Biology)
GJHeducationGJHeducation

Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Biology)

10 Resources
Each of the 10 lessons in this bundle have been written to include a wide range of activities that will engage and motivate the students whilst giving them regular oppotunities to assess their understanding of the current topic as well as checking on their knowledge of any previously linked topics. Each lesson has been written for students studying the Edexcel GCSE Biology course and the following specification points in topic 7 are covered by the lessons in this bundle: 7.1: Endocrine glands and the hormones they secrete 7.3: The control of metabolic rate by thyroxine as an example of negative feedback 7.4 & 7.5: The stages and the interactions of the hormones in the menstrual cycle 7.6 & 7.7: Barrier and hormonal contraception, the menstrual cycle and preventing pregnancy 7.8: The use of hormones in Assisted Reproductive Technology 7.9 & 7.10: The importance of homeostasis, including thermoregulation and osmoregulation 7.11 & 7.12: Thermoregulation 7.13 & 7.14: The control of blood glucose concentration by the release of insulin and glucagon 7.15 & 7.16: The causes and control of diabetes type I and II 7.19, 7.20, 7.21 & 7.22: The function of the kidney, the treatments for kidney failure and the formation of urea Each lesson contains a detailed and engaging PowerPoint and accompanying worksheets, most of which are differentiated to enable students of different abilities to access the work.
The roles of MAMMALIAN SENSORY RECEPTORS (OCR A-level Biology A)
GJHeducationGJHeducation

The roles of MAMMALIAN SENSORY RECEPTORS (OCR A-level Biology A)

(0)
This is a detailed lesson resource that covers the content of point 5.1.3 (a) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their understanding of the roles of mammalian sensory receptors. There is a particular focus on the Pacinian corpuscle to demonstrate how these receptors act as transducers by converting one form of energy into electrical energy which is then conducted as an electrical impulse along the sensory neurone. The lesson begins by looking at the different types of stimuli that can be detected. This leads into a written task where students have to form sentences to detail how thermoreceptors, rods and cones, hair cells in the inner ear and vibration receptors in the cochlea convert different forms of energy into electrical energy. Students will be introduced to the term transducer and will be challenged to work out what these cells carry out by using their sentences. As stated above, students will meet a Pacinian corpuscle and learn that this receptors detects pressure changes in the skin using the concentric rings of connective tissue in its structure. The rest of the lesson focuses on how ions are involved in the maintenance of resting potential and then depolarisation. Time is taken to look into the key details of these two processes so students are confident with this topic when met again during a lesson on the generation of action potentials. All of the tasks are differentiated to allow students of different abilities to access the work. As well as understanding checks to allow the students to assess their progress against the current topic, there are also a number of prior knowledge checks on topics like inorganic ions and methods of movement. This lesson has been designed for students studying the OCR A-level Biology course
Temporal and spatial SUMMATION and inhibition (AQA A-level Biology)
GJHeducationGJHeducation

Temporal and spatial SUMMATION and inhibition (AQA A-level Biology)

(1)
This engaging lesson covers the detail of the 2nd part of specification point 6.2.2 of the AQA A-level Biology specification which states that students should be able to explain temporal and spatial summation as well as understand inhibition by inhibitory synapses. This is a topic which is generally poorly understood by students or brushed over so considerable time has been taken to design the activities to motivate the students so that the content is memorable whilst still being covered in detail. Links are continually made to earlier topics in this module such as synapses and generator potentials but also to topics covered in the previous year and still to be covered. The lesson begins by challenging the students to recognise a description of generator potential and they will then discover that this is also known as an EPSP. Students will recall that a small depolarisation may not lead to the opening of the voltage gated channels and therefore the full depolarisation which is needed for the initiation of an action potential and will discuss how this problem could be overcome. Lots of discussion points like this are included in the lesson to encourage the students to challenge and debate why a particular process of mechanism occurs. Students will therefore learn that EPSPs can be combined and this is known as summation. A quiz round is used to introduce temporal and spatial summation. Moving forwards, students are presented with a number of examples where they have to decide why type of summation is involved. Again, the lesson has been written to include real-life examples such as chronic pain conditions so the chances of the content sticking is increased. The final part of the lesson introduces IPSPs and the effect of these on summation and action potentials is discussed. This lesson has been designed for students studying on the AQA A-level Biology course and ties in well with the other uploaded lessons from topic 6 which include cholinergic synapses and neuromuscular junctions, sensory receptors and nerve impulses
ULTRAFILTRATION (OCR A-level Biology A)
GJHeducationGJHeducation

ULTRAFILTRATION (OCR A-level Biology A)

(0)
This detailed lesson has been written to cover the part of specification point 5.1.2 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the process of ultrafiltration. The aim of the design was to give the students the opportunity to discover this particular function and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem This lesson has been written for students studying on the OCR A-level Biology A course and ties in nicely with the other 5.1.2 kidney lessons on the structure of the nephron, selective reabsorption, osmoregulation and kidney failure
The transmission of an action potential (CIE International A-level Biology)
GJHeducationGJHeducation

The transmission of an action potential (CIE International A-level Biology)

(0)
This is a highly detailed and engaging lesson that covers the detail of specification point 15.1 (e) of the CIE International A-level Biology specification which states that students should be able to describe and explain the transmission of an action potential in a myelinated neurone. This topic is commonly assessed in the terminal exams so a lot of time has been taken to design this resource to include a wide range of activities that motivate the students whilst ensuring that the content is covered in the depth of detail that will allow them to have a real understanding. Interspersed within the activities are understanding checks and prior knowledge checks to enable the students to not only assess their progress against the current topic but also to challenge themselves on the links to earlier topics such as methods of movements across cell membranes. There are also a number of quiz competitions which are used to introduce key terms and values in a fun and memorable way and discussion points to encourage the students to consider why a particular process or mechanism occurs. Over the course of the lesson, the students will learn and discover how the movement of ions across the membrane causes the membrane potential to change. They will see how the resting potential is maintained through the use of the sodium/potassium pump and potassium ion leakage. There is a real focus on depolarisation to allow students to understand how generator potentials can combine and if the resulting depolarisation then exceeds the threshold potential, a full depolarisation will occur. At this point in the lesson students will discover how the all or nothing response explains that action potentials have the same magnitude and that instead a stronger stimulus is linked to an increase in the frequency of the transmission. The rest of the lesson challenges the students to apply their knowledge to explain how repolarisation and hyperpolarisation result and to suggest advantages of the refractory period for nerve cells. This lesson has been designed for students studying the CIE International A-level Biology course and ties in nicely with other uploaded lessons which cover the content of topic 15.1 (Control and coordination in mammals)
Homeostasis and negative feedback (CIE International A-level Biology)
GJHeducationGJHeducation

Homeostasis and negative feedback (CIE International A-level Biology)

(0)
This is a detailed and engaging lesson which has been designed to cover specification points 14.1 (a, b and c) of the CIE International A-level Biology specification which states that students should be able to explain the importance of homeostasis and the roles of negative feedback and the communication systems in this control. As homeostasis is a topic met at GCSE, this lesson has been written to build on this knowledge as well as to check on their prior knowledge of earlier A-level topics such as osmosis when considering blood water potential. Discussion points are written into the lesson at regular intervals to encourage the students to consider why a particular process or method takes place and understanding checks allow them to assess their progress. Students will recall how body temperature, blood water potential and blood glucose concentration are maintained within strict limits and the importance of these systems are looked into in detail. They will also learn that carbon dioxide concentration and blood pressure are aspects that are controlled in the body and key terminology such as chemoreceptors and baroreceptors are used throughout so that students are confident with the meaning when met later in the module. The key components of the control system are recalled and then time is taken to focus on the cell signalling that occurs between the coordination centre and the effectors. Students will learn to associate the response with either the use of the neuronal or hormonal system. The final part of the lesson looks at the importance of negative feedback in reversing the change in order to bring it back to the optimum and the differences to positive feedback are also explored. This lesson has been written for students who are studying the CIE International A-level Biology course and ties in well with the other uploaded lessons on this topic such as those on the kidney
The structure of the KIDNEY (CIE International A-level Biology A)
GJHeducationGJHeducation

The structure of the KIDNEY (CIE International A-level Biology A)

(0)
This detailed lesson has been planned to cover the content of specification point 14.1 (e) of the CIE International A-level Biology specification which states that students should be able to describe the gross structure of the kidney and the detailed structure of the nephron. The lesson was designed at the same time as the other lessons in this topic on ultrafiltration, selective reabsorption and osmoregulation so that a common theme runs throughout and students can build their knowledge up gradually and develop a deep understanding of this organ. Students will come to recognise the renal cortex and renal medulla as the two regions of the kidney and learn the parts of the nephron which are found in each of these regions. Time is taken to look at the vascular supply of this organ and specifically to explain how the renal artery divides into the afferent arterioles which carry blood towards the glomerulus and the efferent arterioles which carry the blood away. The main task of the lesson challenges the students to relate structure to function. Having been introduced to the names of each of the parts of the nephron, they have to use the details of the structures found at these parts to match the function. For example, they have to make the connection between the microvilli in the PCT as a sign that this part is involved in selective reabsorption. This lesson has been designed for students studying on the CIE International A-level Biology course
Blood glucose concentration (CIE International A-level Biology)
GJHeducationGJHeducation

Blood glucose concentration (CIE International A-level Biology)

(0)
This fully-resourced lesson is highly detailed and covers all of specification points 14.1 (h, i and j) of the CIE International A-level Biology specification which states that students should be able to describe how blood glucose concentration is regulated using negative feedback mechanisms that release insulin or glucagon and outline the role of cyclic AMP. A wide range of activities will maintain motivation and engagement whilst the content is covered in detail to enable the students to explain how the receptors in the pancreas detect the concentration change and how the hormones attaching to receptor sites on the liver triggers a series of events in this effector organ. This is a topic which has a huge amount of difficult terminology so time is taken to look at all of the key words, especially those which begin with the letter G so students are able to use them accurately in the correct context. The final part of the lesson looks at the role of the secondary messenger, cyclic AMP, and describes how this is involved when glucagon and adrenaline attach to receptors on the liver. The action of adrenaline is also considered and linked to the breakdown of glycogen to glucose during glycogenolysis. This lesson has been written for students studying on the CIE International A-level Biology course and ties in with the other uploaded lessons which cover the content of topic 14.1 (Homeostasis in mammals)