Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
5 Full Lesson Bundle + FREE practical lesson covering Transition Elements from OCR A Level Chemistry. Please review the learning objectives below
Lesson 1: Transition Metals & Their Compounds
To know the electron configuration of atoms and ions of the d-block elements of Period 4 (Sc–Zn), given the atomic number and charge
To understand the elements Ti–Cu as transition elements
To illustrate, using at least two transition elements, of:
(i) the existence of more than one oxidation state for each element in its compounds
(ii) the formation of coloured ions
(iii) the catalytic behaviour of the elements and their compounds and their importance in the manufacture of chemicals by industry
Lesson 2: Transition Metals & Complex Ions
To explain and use the term ligand in terms of dative covalent bonding to a metal ion or metal, including bidentate ligands
To use the terms complex ion and coordination number
To construct examples of complexes with:
(i) six-fold coordination with an octahedral shape
(ii) four-fold coordination with either a planar or tetrahedral shape
Lesson 3: Stereoisomerism in Complex Ions
To understand the types of stereoisomerism shown by metal complexes, including those associated with bidentate and multidentate ligands including:
(i) cis–trans isomerism e.g. Pt(NH3)2Cl2
(ii) optical isomerism e.g. [Ni(NH2CH2CH2NH2)3] 2+
To understand the use of cis-platin as an anti-cancer drug and its action by binding to DNA preventing cell division
Lesson 4: Precipitation and Ligand Substitution Reactions
To recall the colour changes and observations of reactions of Cu2+, Fe2+, Fe3+, Mn2+ and Cr3+ with aqueous sodium hydroxide and ammonia (small amounts and in excess)
To construct ionic equations for the precipitation reactions that take place
To construct ionic equation of the ligand substitution reactions that take place in Cu2+ ions and Cr3+ ions
To explain the biochemical importance of iron in haemoglobin, including ligand substitution involving O2 and CO
Lesson 5: Transition Elements & Redox Reactions
To interpret the redox reactions and accompanying colour changes for:
(i) interconversions between Fe2+ and Fe3+
(ii) interconversions between Cr3+ and Cr2O72−
(iii) reduction of Cu2+ to Cu+
(iv) disproportionation of Cu+ to Cu2+ and Cu
To interpret and predict redox reactions and accompanying colour changes of unfamiliar reactions including ligand substitution, precipitation and redox reactions
Lesson 6: Practical on Precipitation and Ligand Substitution Reactions
To make observations of the reactions of Cu2+, Fe2+, Fe3+, Mn2+ and Cr3+ in aqueous sodium hydroxide and ammonia
To construct ionic equations for the redox reactions that take place
For 23 printable flashcards on this chapter please click here:
https://www.tes.com/teaching-resource/resource-12637622
For lessons on redox titrations involving transition metals please click here :
Part 1:
https://www.tes.com/teaching-resource/ocr-redox-titrations-part-1-12244792
Part 2:
https://www.tes.com/teaching-resource/ocr-redox-titrations-part-2-12244807
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Step by Step checklist on how to balance any symbol equation. To support this checklist there is a worked example document with two examples of balancing equations using the steps from the checklist. Perfect for teaching KS3-KS5
A great revision tool for GCSE and A Level Chemistry students for learning how to construct symbol equations in chemistry . Test students regularly on the list of compounds and ions so they can build their recall on this topic
A structured lesson including starter activity, AfL work tasks on cracking of alkanes
By the end of this lesson KS5 students should be able to:
To describe what cracking is and its economic benefits
To explain what thermal and catalytic cracking
To compare and evaluate the conditions for and the products of thermal and catalytic cracking
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured lesson including starter activity, AfL work tasks on the combustion of alkanes. This lesson is suitable for the AQA specification
By the end of this lesson KS5 students should be able:
To understand why alkanes are good fuels
To recall the complete and incomplete combustions equations (both word and symbol) of alkanes
To explain the environmental problems associated with pollutant products when alkanes are used as fuels
To explain the use of catalytic convertors and processes such as flue gas desulfurisation to remove gaseous pollutants produced during alkane combustion
All questions come with answers
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Mass Spectrometry in Organic Chemistry. Suitable for OCR AS Chemistry.
By the end of the lesson, students should be able to:
Use a mass spectrum of an organic compound to identify the molecular ion peak and hence to determine molecular mass
2)Perform analysis of fragmentation peaks in a mass spectrum to identify parts of structures
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Transition Metals & Redox Reactions. All tasks have worked out answers, which will allow students to self assess their work during the lesson
By the end of this lesson KS5 students should be able to:
LO1. To interpret the redox reactions and accompanying colour changes for:
(i) interconversions between Fe2+ and Fe3+
(ii) interconversions between Cr3+ and Cr2O72−
(iii) reduction of Cu2+ to Cu+
(iv) disproportionation of Cu+ to Cu2+ and Cu
LO2. To interpret and predict redox reactions and accompanying colour changes of unfamiliar reactions including ligand substitution, precipitation and redox reactions
NOTE: 23 printable flashcards of all the transition element reactions: precipitation, ligand substitution and redox reactions is available here
https://www.tes.com/teaching-resource/resource-12637622
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Lesson 3 of 3 on Redox Reactions in AS Chemistry. This lesson focuses on FORMING REDOX EQUATIONS. This lesson includes starter activity, mini AfL work tasks with answers, main work tasks with answers (NOTE: Lesson 1, 2 and 3 are available as a bundle resource). This topic is also likely to be recapped in Year 13 when students are introduced to redox reactions and electrode potentials
By the end of the lesson students should be able to:
Identify what substance has been reduced or oxidised in a redox reaction
Construct balanced half equations by adding H+ and H2O
Construct full ionic redox equations from half equations
Students will be able to take rich notes on this topic
The teacher will be able to quickly assess students’ understanding of forming redox equations by carrying our mini AfL tasks either on mini white boards or in students’ books
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Hess’ Law and Enthalpy Cycles
By the end of this lesson KS5 students should be able to:
LO1. To state Hess’ Law
LO2. To calculate the enthalpy change of a reaction from enthalpy changes of combustion using Hess’ Law
LO3. To calculate the enthalpy change of a reaction from enthalpy changes of formation using Hess’ Law
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
3 Full Lesson Bundle (including a FREE revision lesson!) on Buffer Solutions. This bundle covers the OCR A Level Chemistry specification. Please review the learning objectives below.
**Part 1: Explaining How Buffer Solutions Work
To know a buffer solution is a system that minimises pH changes on addition of small amounts of an acid or base
To describe how a buffer solution is formed using weak acids, salts and strong alkalis
To explain the role of the conjugate acid-base pair in an acid buffer solution such as how the blood pH is controlled by the carbonic acid–hydrogencarbonate buffer system
**Part 2: Buffer Solution Calculations (Part 1)
To calculate the pH of a buffer solution containing a weak acid and the salt of a weak acid by using the Ka expression and pH equation
To calculate equilibrium concentrations, moles or mass of the components of a weak acid-salt of a weak acid buffer solution
**Part 3: Buffer Solution Calculations (Part 2)
To calculate the pH of a weak acid-strong alkali buffer solution
To calculate equilibrium concentrations, moles or mass of the components of a weak acid- strong alkali buffer solution
Part 4: BONUS Revision Lesson
To review how to calculate the pH of a buffer solution containing a weak acid and a strong alkali
To review how to calculate the pH of a buffer solution containing a weak acid and the salt of the weak acid
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
3 Full Lesson Bundle covering Analytical Techniques (mass spectrometry, IR spectroscopy and combined techniques in organic chemistry) . These lessons follow the OCR specification
Lesson 1: Mass Spectrometry in Organic Chemistry
**1) Use a mass spectrum of an organic compound to identify the molecular ion peak and hence to determine molecular mass
**2)Perform analysis of fragmentation peaks in a mass spectrum to identify parts of structures
Lesson 2: IR Spectroscopy
**1) To understand the absorption of infrared radiation by atmospheric gases containing C=O, O-H and C-H bonds, their suspected link to global warming and resulting changes to energy uses
**2)To understand how infrared spectroscopy works
**3)To understand the application of infrared spectroscopy
**4) To interpret IR spectra
Lesson 3: Combined Spectroscopic Techniques
**1)To apply combined spectroscopic techniques (IR spectroscopy, mass spectrometry and elemental analysis) to identify the structures of unknown compounds
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work tasks with answers on Kc and Controlling the position of equilibrium.
By the end of the lesson, students should be able to:
To understand and explain the effect of temperature, concentration, pressure and catalysts on Kc and controlling the position of equilibrium
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks, main work tasks with answers on The Equilibrium Constant Kp
By the end of the lesson students should be able to:
To use the terms mole fraction and partial pressure
To construct expressions for Kp for homogeneous and heterogeneous equilibria
To calculate Kp including determination of units
To understand the affect of temperature, pressure, concentration and catalysts on Kp and controlling the position of equilibrium
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks with answers on Dynamic Equilibrium and Le Chatelier’s Principle
By the end of the lesson students should be able to:
To explain the term dynamic equilibrium
To apply le Chatelier’s principle to homogeneous equilibria in order to deduce qualitatively the effect of a change in temperature, pressure or concentration on the position of equilibrium
To explain why catalysts do not change the position of equilibrium
To explain the importance to the chemical industry of a compromise between chemical equilibrium and reaction rate in deciding the operational conditions
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks, main work tasks with answers on **The Equilibrium Constant Kc (Part 2) - A L evel OCR Chemistry (Year 13) **
*Note: A full lesson on the Equilibrium Constant Kc (Part 1) -AS Level OCR Chemistry (Year 12) is also available *
By the end of the lesson students should be able to:
To construct expressions for the equilibrium constant Kc for homogeneous and heterogeneous reactions
To calculate units for Kc
To calculate quantities present at equilibrium and therefore kc given appropriate data
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks, main work tasks with answers on **The Equilibrium Constant Kc (Part 1) - AS OCR Chemistry (Year 12) **
*Note: A full lesson on the Equilibrium Constant Kc (Part 2) -A Level OCR Chemistry (Year 13) is also available *
By the end of the lesson students should be able to:
To construct expressions for the equilibrium constant Kc for homogeneous reactions
To calculate the equilibrium constant Kc from provided equilibrium concentrations
To estimate the position of equilibrium from the magnitude of Kc
To know the techniques and procedures used to investigate changes to the position of equilibrium for changes in concentration and temperature
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
9 Full Lesson Bundle covering Module 3.1 - The Periodic Table from OCR A Level Chemistry A specification. Please review the learning objectives below
Lesson 1: The Structure of The Periodic Table
To know how the periodic table is arranged
To describe the periodic trend in electron configurations across periods 2 and 3
To classify elements into s, p and d blocks
Lesson 2: AS Chemistry: Ionisation Energy (Part 1)
To define the term ‘first ionisation energy’ and successive ionisation energies
To describe the factors affecting ionisation energy
To explain the trend in successive ionisation energies of an element
Lesson 3: AS Chemistry: Ionisation Energy (Part 2)
To explain the trend in first ionisation energies down a group
To explain the trend in first ionisation energies across period 2
To explain the trend in first ionisation energies across period 3
Lesson 4: Periodicity: Melting Points
To describe the trend in structure from giant metallic to giant covalent to simple molecular lattice
To explain the variation in melting points across period 2 & 3 in terms of structure and bonding
Lesson 5: AS Chemistry: Group 2 Elements
To know group 2 elements lose their outer shell s2 electrons to form +2 ions
To state and explain the trend in first and second ionisation energies of group 2 elements and how this links to their relative reactivities with oxygen, water and dilute acids
To onstruct half equations of redox reactions of group 2 elements with oxygen, water and dilute acids and to identify what species have been oxidised and reduced using oxidation numbers
Lesson 6: AS Chemistry: Group 2 Compounds
To know the reaction between group 2 metal oxides and water
To state the trend in solubility and alkalinity of group 2 metal hydroxides
To describe the uses of some group 2 compounds including their equations
Lesson 7: The Halogens: Properties & Reactivity
To describe and explain the trend in boiling points of the halogens in terms of induced dipole-dipole interactions (London Forces)
To describe and explain the trend in reactivity of the halogens illustrated by their displacement reaction with other halide ions
To construct full and ionic equations of halogen-halide displacement reactions and to predict the colour changes of these reactions in aqueous and organic solutions
Lesson 8: Disproportionation & The Uses of Chlorine
To explain the term disproportionation
To explain how the reaction of chlorine with water or cold dilute sodium hydroxide are examples of disproportionation reactions
To evaluate the uses of chlorine (How Science Works)
Lesson 9: Qualitative Analysis
To carry out test tube reactions and record observations to determine the presence of the following anions : CO32- SO42- , Cl-, Br-, and I-
To carry out test tube reactions and record observations to determine the presence of the following cations: NH4+, Fe2+, Fe3+, Mn2+ and Cu2+
To construct ionic equations to explain the qualitative analysis tests of cations and anions
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Enthalpy and Reactions
By the end of this lesson KS5 students should be able:
LO1: To explain that some chemical reactions are accompanied by enthalpy changes that are exothermic or endothermic
LO2: To construct enthalpy profile diagrams to show the difference in the enthalpy of reactants compared with products
LO3: To qualitatively explain the term activation energy, including use of enthalpy profile diagrams
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above