Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
CIE IGCSE Combined Science B3 REVISION (Biological molecules)
GJHeducationGJHeducation

CIE IGCSE Combined Science B3 REVISION (Biological molecules)

(0)
This concise, engaging revision lesson has been designed to include activities that will motivate the students whilst they assess their understanding of topic B3 (Biological molecules) of the CIE IGCSE Combined Science specification. An understanding of biological molecules is fundamental to the understanding of a lot other Biology topics and this lesson has attempted to make the links between the different areas. The range of activities which include exam questions, quick tasks and quiz competitions have been written to cover as much of the content as possible but the following topics have received particular attention: The chemical elements in carbohydrates The formation of starch and glycogen from glucose The iodine test for starch Lipids are formed of fatty acids and glycerol Investigational skills The ethanol emulsion test for lipids This resource includes a PowerPoint (27 slides) and a worksheet with a task about the digestion of milk fat so students can recognise the components of lipids
Human endocrine system (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

Human endocrine system (AQA GCSE Biology & Combined Science)

(0)
This lesson has been designed to cover the content set out in specification point 5.3.1 (Human endocrine system) of topic 5 of the AQA GCSE Biology & Combined Science courses. A wide range of activities have been written into the lesson with the aim of engaging and motivating the students whilst ensuring that the content is covered in detail. These activities include a number of quiz competitions which will challenge the students to identify an endocrine organ when presented with three organs as well as introducing them to the names of some of the hormones released by the pituitary gland. The following content is covered in this lesson: Hormones as chemicals which have a slow but long lasting effect on target organs The location of the pituitary, adrenal and thyroid glands in the human body The location of the pancreas, ovaries and testes in the human body The hormones which are secreted by the endocrine glands The effects of the hormones on their target organs This lesson has been written for GCSE-aged students who are studying on the AQA courses but is suitable for younger students who are looking at the different organ systems
The human nervous system (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

The human nervous system (AQA GCSE Biology & Combined Science)

(0)
This lesson has been designed to cover the content as detailed in point 5.2.1 (The structure and function of the human nervous system) of the AQA GCSE Biology & Combined Science specifications. Consisting of a detailed and engaging PowerPoint (38 slides) and accompanying worksheets, the range of activities will motivate the students whilst ensuring that the content is covered in detail. Students will learn how receptors, sensory neurones, the CNS, motor neurones and effectors are involved in the detection and response to a stimulus. Reflex reactions are also considered and discussed so that students can recognise how these automatic and rapid responses avoid damage and pain to humans. Progress checks are included throughout the lesson so that students can assess their understanding of the content and any misconceptions can be addressed whilst quiz competitions, like FROM NUMBERS 2 LETTERS and YOU DO THE MATH, are used to introduce new terms and important values in a fun and memorable way. This lesson has been written for GCSE-aged students who are studying the AQA GCSE Biology or Combined Science specifications but can be used with older students who need to know the key details of the nervous system for their A level course before taking it to greater depths
The components of a REFLEX ARC (WJEC GCSE Biology)
GJHeducationGJHeducation

The components of a REFLEX ARC (WJEC GCSE Biology)

(0)
This lesson resource contains a engaging PowerPoint and accompanying worksheets, all of which have been designed to cover the content of specification point 2.5 (d) on the WJEC GCSE Biology specification. This specification point states that students should know the components of a reflex arc. This lesson builds on the knowledge from the previous lesson on the structure and function of the nervous system (2.5b). The lesson begins by challenging the students to come up with the word reflex having been presented with 5 other synonyms of the word automatic. This leads into a section of discovery and discussion where students are encouraged to consider how a reflex arc can be automatic and rapid despite the fact that the impulse is conducted into the CNS like any other reaction. Students will be introduced to the relay neurone and will learn how this provides a communication between the sensory neurone and the motor neurone and therefore means that these arcs do not involve processing by the brain. Moving forwards, the main task of the lesson challenges the students to write a detailed description of a reflex arc. Assistance is given on the critical section which involves the relay neurone in the spinal cord before they have to use their knowledge of nervous reactions to write a paragraph before and after to complete the description. As a final task, students will have to compare the structure and functions of sensory, motor and relay neurones. Although this lesson has been designed for students studying on WJEC GCSE Biology course, it is also suitable for older students who are studying reflex reactions at A-level and need to recall the main details.
The control of BLOOD GLUCOSE (WJEC GCSE Biology)
GJHeducationGJHeducation

The control of BLOOD GLUCOSE (WJEC GCSE Biology)

(0)
This concise lesson presentation and accompanying worksheet have been designed to cover the content of point 2.5 (h) of the WJEC GCSE Biology specification which states that students should understand the need to keep blood glucose levels within a constant range. Homeostasis is a running theme throughout the 2.5 topic so this lesson builds on knowledge from earlier topics to ensure that there is a deep understanding. The lesson begins by introducing glucose and a quiz competition will lead to the range 4 - 7, so that students can recognise that this is the set range within which this molecule’s concentration must be kept. Time is taken to look at some of the health problems that are associated with an increase in concentration above this upper limit and the general Biological knowledge of the students is tested with some questions. Moving forwards, the main task of the lesson involves a step by step guide through the stages in the response to a high blood glucose concentration and shows the students how the release of insulin leads to the uptake of glucose from the blood and a conversion to glycogen by the liver and muscle cells. The summary task at the end challenges the students to bring all of the information together to write a detailed description of this response and this activity is differentiated to aid those students who need extra assistance. This lesson has been designed for students studying the WJEC GCSE Biology course but could be used with A-level students who are beginning this topic and need to recall the key details.
Thyroxine and the control of metabolic rate (Edexcel GCSE Biology & Combined Science HT)
GJHeducationGJHeducation

Thyroxine and the control of metabolic rate (Edexcel GCSE Biology & Combined Science HT)

(0)
This resource contains a concise, engaging PowerPoint and accompanying worksheets which together cover the content of specification point 7.3 (Thyroxine and the control of metabolic rate as an example of negative feedback) as found on the Edexcel GCSE Biology & Combined Science higher tier specifications. Over the course of the lesson, students will learn about the effects of the release of thyroxine, how this release is regulated by the pituitary gland and hypothalamus and also will understand how this control is an example of negative feedback. Due to the obvious connection to the previously learned endocrine system topic, regular opportunities are taken to check on this prior knowledge and these work well with the understanding checks which allow the students to assess their progress. A quiz competition called FROM NUMBERS 2 LETTERS is used to introduce the key abbreviations in a fun and memorable way, whilst the key details of the content is always at the forefront of the design of the lesson. This lesson has been written for students studying the higher tier of the Edexcel GCSE Biology or Combined Science courses but it is also suitable for use with A-level students who need to recall the key details of these two hormones
Homeostasis (WJEC GCSE Biology)
GJHeducationGJHeducation

Homeostasis (WJEC GCSE Biology)

(0)
This fully-resourced lesson has been designed to cover the content found in specification point 2.5 (f) of the WJEC GCSE Biology specification which states that students should understand why animals need to regulate the conditions inside their bodies. This resource contains an engaging and detailed PowerPoint (45 slides) and accompanying worksheets The lesson begins by challenging the student’s literacy skills as they are asked to recognise the key term, optimum, from 6 of its’ synonyms. Moving forwards, a range of quiz competitions are used to introduce the term homeostasis and to provide a definition for this key process. Students are given a newspaper article about water and blood glucose so they can recognise 2 conditions which are controlled in the human body. The next part of the lesson looks at the importance of maintaining the levels of water and glucose by considering the medical problems that could arise if they move away from the optimum levels. Students will learn that body temperature is also controlled and links are made to earlier knowledge as they have to explain why an increase in temperature above the set point would be an issue because of the denaturation of enzymes. The rest of the lesson looks at the three parts that are included in all control systems before a final quiz round introduces the receptors, coordination centre and effectors in the control of body temperature. As stated at the top, this lesson has been designed for GCSE-aged students who are studying the WJEC GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the process in more detail
Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Biology)
GJHeducationGJHeducation

Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Biology)

10 Resources
Each of the 10 lessons in this bundle have been written to include a wide range of activities that will engage and motivate the students whilst giving them regular oppotunities to assess their understanding of the current topic as well as checking on their knowledge of any previously linked topics. Each lesson has been written for students studying the Edexcel GCSE Biology course and the following specification points in topic 7 are covered by the lessons in this bundle: 7.1: Endocrine glands and the hormones they secrete 7.3: The control of metabolic rate by thyroxine as an example of negative feedback 7.4 & 7.5: The stages and the interactions of the hormones in the menstrual cycle 7.6 & 7.7: Barrier and hormonal contraception, the menstrual cycle and preventing pregnancy 7.8: The use of hormones in Assisted Reproductive Technology 7.9 & 7.10: The importance of homeostasis, including thermoregulation and osmoregulation 7.11 & 7.12: Thermoregulation 7.13 & 7.14: The control of blood glucose concentration by the release of insulin and glucagon 7.15 & 7.16: The causes and control of diabetes type I and II 7.19, 7.20, 7.21 & 7.22: The function of the kidney, the treatments for kidney failure and the formation of urea Each lesson contains a detailed and engaging PowerPoint and accompanying worksheets, most of which are differentiated to enable students of different abilities to access the work.
The causes and control of diabetes type I and II (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

The causes and control of diabetes type I and II (Edexcel GCSE Biology & Combined Science)

(0)
This is a fully-resourced lesson consisting of an engaging PowerPoint and differentiated worksheets which have been designed to cover the content of points 7.15 & 7.16 as detailed on the Edexcel GCSE Biology & Combined Science specifications. This point states that students should be able to describe the cause of diabetes type I and II and describe how they are both controlled. There are links made throughout the lesson between this topic and the control of blood glucose concentration from specification point 7,13 and 7.14 The lesson has been designed to take the format of a diabetic clinic where the students perform the duties of the attending doctor. They will move through the different expectations of the role which includes identifying symptoms, diagnosis of type I or II and communication with the patients to reveal the findings. The wide range of activities will enable the students to learn how to spot that someone is suffering from diabetes and the similarities and differences between the different types so they can determine which one is being presented. The summary tasks challenge the students to construct a letter to a patient who is suffering from type II and to identify the correct type from another doctor’s letter. Understanding and previous knowledge checks are interspersed with quiz competitions, like the one shown in the cover image, which make the learning fun and memorable and enable the students to assess their progress. This lesson has been designed for students studying the Edexcel GCSE Biology or Combined Science course but is suitable for both younger and older students who are focusing on this disease
The importance of the myelin sheath (CIE International A-level Biology)
GJHeducationGJHeducation

The importance of the myelin sheath (CIE International A-level Biology)

(0)
This lesson has been written to cover the detail of specification point 15.1 (f) of the CIE International A-level Biology specification which states that students should be able to explain the importance of myelination. A wide range of activities have been written into this resource to maintain the motivation of the students whilst ensuring that the detail is covered in depth. Interspersed with the activities are understanding checks and prior knowledge checks to allow the students to not only assess their understanding of the current topic but also challenge themselves to make links to earlier topics such as the movement of ions across membranes and biological molecules. Time at the end of the lesson is also given to future knowledge such as the involvement of autonomic motor neurones in the stimulation of involuntary muscles. Over the course of the lesson, students consider the structure of the myelin sheath and specifically how the insulation is not complete all the way along which leaves gaps known as the nodes of Ranvier which allow the entry and exit of ions. Saltatory conduction is poorly explained by a lot of students so time is taken to look at the way that the action potential jumps between the nodes and this is explained further by reference to local currents. The rest of the lesson focuses on the other two factors which are axon diameter and temperature and students are challenged to discover these two by focusing on the vampire squid. This lesson has been designed for students studying the CIE International A-level Biology course and the other part of this specification point which covers the refractory period was explained in the previous lesson on the transmission of the action potential
Blood glucose concentration (CIE International A-level Biology)
GJHeducationGJHeducation

Blood glucose concentration (CIE International A-level Biology)

(0)
This fully-resourced lesson is highly detailed and covers all of specification points 14.1 (h, i and j) of the CIE International A-level Biology specification which states that students should be able to describe how blood glucose concentration is regulated using negative feedback mechanisms that release insulin or glucagon and outline the role of cyclic AMP. A wide range of activities will maintain motivation and engagement whilst the content is covered in detail to enable the students to explain how the receptors in the pancreas detect the concentration change and how the hormones attaching to receptor sites on the liver triggers a series of events in this effector organ. This is a topic which has a huge amount of difficult terminology so time is taken to look at all of the key words, especially those which begin with the letter G so students are able to use them accurately in the correct context. The final part of the lesson looks at the role of the secondary messenger, cyclic AMP, and describes how this is involved when glucagon and adrenaline attach to receptors on the liver. The action of adrenaline is also considered and linked to the breakdown of glycogen to glucose during glycogenolysis. This lesson has been written for students studying on the CIE International A-level Biology course and ties in with the other uploaded lessons which cover the content of topic 14.1 (Homeostasis in mammals)
GENETIC TERMS (CIE International A-level Biology)
GJHeducationGJHeducation

GENETIC TERMS (CIE International A-level Biology)

(0)
This lesson focuses on the use and explanation of key genetic terms which will support students in their understanding of the topic 16 (inherited change) of the CIE International A-level Biology specification. In this topic, students are expected to use genetic diagrams to solve problems and this is only possible with a clear understanding of the genetic terminology that will be used in related exam questions. As some of these terms were met at GCSE, this fully-resourced lesson has been designed to include a wide range of activities that build on this prior knowledge and provide clear explanations as to their meanings as well as numerous examples of their use in both questions and exemplary answers. The main task provides the students with an opportunity to apply their understanding by recognising a dominance hierarchy in a multiple alleles characteristic and then calculating a phenotypic ratio when given a completed genetic diagram. Other tasks include prior knowledge checks, discussion points to encourage students to consider the implementation of the genetic terms and quiz competitions to introduce new terms, maintain engagement and act as an understanding check. The 16 terms are genome, gene, chromosome, gene locus, homologous chromosomes, alleles, dominant, recessive, genotype, codominance, multiple alleles, autosomes, sex chromosomes, phenotype, homozygous and heterozygous
Hardy-Weinberg equation (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Hardy-Weinberg equation (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson guides students through the use of the Hardy-Weinberg equation to see whether a change in allele frequency is occurring in a population over time. The detailed PowerPoint and differentiated practice questions worksheets have been designed to cover point 4.5 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which expects students to be able to use this mathematical equation The lesson begins by looking at the equation and ensuring that students understand the meaning of each of the terms. The recessive condition, cystic fibrosis, is used as an example so that students can start to apply their knowledge and assess whether they understand which genotypes go with which term. Moving forwards, a step-by-step guide is used to show students how to answer a question. Tips are given during the guide so that common misconceptions and mistakes are addressed immediately. The rest of the lesson gives students the opportunity to apply their knowledge to a set of 3 questions, which have been differentiated so that all abilities are able to access the work and be challenged
Nerve impulses (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Nerve impulses (Pearson Edexcel A-level Biology)

(0)
This highly detailed and engaging lesson which explains how a nerve impulse (action potential) is conducted along an axon). The PowerPoint and accompanying resources have been designed to cover point 8.3 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should be able to describe how the changes in the membrane permeability to sodium and potassium ions results in conduction. This topic is commonly assessed in the terminal exams so a lot of time has been taken to design this resource to include a wide range of activities that motivate the students whilst ensuring that the content is covered in the depth of detail that will allow them to have a real understanding. Interspersed within the activities are understanding checks and prior knowledge checks to enable the students to not only assess their progress against the current topic but also to challenge themselves on the links to earlier topics such as methods of movements across cell membranes and saltatory conduction. There are also a number of quiz competitions which are used to introduce key terms and values in a fun and memorable way and discussion points to encourage the students to consider why a particular process or mechanism occurs. Over the course of the lesson, the students will learn and discover how the movement of ions across the membrane causes the membrane potential to change. They will see how the resting potential is maintained through the use of the sodium/potassium pump and potassium ion leakage. There is a real focus on depolarisation to allow students to understand how generator potentials can combine and if the resulting depolarisation then exceeds the threshold potential, a full depolarisation will occur. At this point in the lesson students will discover how the all or nothing response explains that action potentials have the same magnitude and that instead a stronger stimulus is linked to an increase in the frequency of the transmission. The rest of the lesson challenges the students to apply their knowledge to explain how repolarisation and hyperpolarisation result and to suggest advantages of the refractory period for nerve cells.
Coordination of the heart beat (Edexcel A-level Biology)
GJHeducationGJHeducation

Coordination of the heart beat (Edexcel A-level Biology)

(0)
This engaging lesson looks at the myogenic nature of cardiac muscle and explores the roles of the SAN, AVN, Bundle of His and Purkyne fibres in the normal electrical activity of the heart. The PowerPoint and accompanying resources have been designed to cover the points 7.8 (i & ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from topic 1. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology Due to the detailed nature of this lesson, it is estimated that it will take about 2 hours of A-level teaching time to cover the two specification points
Mutations (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Mutations (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at how errors in DNA replication can give rise to gene mutations and then links to an earlier topic by exploring how these base changes can affect the primary structure of a polypeptide. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 2.12 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and constantly refers back to points 2.7, 2.8 and 2.9 which detail the genetic code, genes and the structure of proteins. In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was taught in 2.6. Therefore, the start of the lesson focuses on transcription and translation and students are guided through the use of the codon table to identify amino acids. Moving forwards, a quick quiz competition is used to introduce the names of three types of gene mutation whilst challenging the students to recognise terms which are associated with the genetic code and were met in the previous lesson. The main focus of the lesson is base substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution.
Calculating CARDIAC OUTPUT (Edexcel A-level Biology)
GJHeducationGJHeducation

Calculating CARDIAC OUTPUT (Edexcel A-level Biology)

(0)
This clear and concise lesson looks at the calculation of cardiac output as the product of stroke volume and heart rate. This engaging PowerPoint and accompanying resource have both been designed to cover point 7.9 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should be able to calculate cardiac output. The lesson begins by challenging the students to recall that the left ventricle is the heart chamber with the thickest myocardial wall. This leads into the introduction of stroke volume as the volume of blood which is pumped out of the left ventricle each heart beat. A quick quiz game is used to introduce a normative value for the stroke volume and students are encouraged to discuss whether males or females would have higher values and to explain why. A second edition of this quiz reveals a normative value for resting heart rate and this results into the introduction of the equation to calculate cardiac output. A series of questions are used to challenge their ability to apply this equation and percentage change is involved as well. The final part of the lesson looks at the hypertrophy of cardiac muscle and students will look at how this increase in the size of cardiac muscle affects the three factors and will be challenged to explain why with reference to the cardiac cycle that was covered in an earlier topic.
Glycolysis (Edexcel A-level Biology)
GJHeducationGJHeducation

Glycolysis (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at the roles of glycolysis in aerobic and anaerobic respiration and explains how the sequence of reactions results in glucose being converted to pyruvate. The engaging PowerPoint and accompanying differentiated resources have been designed to cover point 7.4 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the hexoses and the production of the ATP, coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. This lesson has been written to tie in with the other uploaded lessons on the Link reaction, Krebs cycle, oxidative phosphorylation and the production of lactate.
Krebs cycle (AQA A-level Biology)
GJHeducationGJHeducation

Krebs cycle (AQA A-level Biology)

(0)
This fully-resourced lesson looks at the series of oxidation-reduction reactions that form the Krebs cycle and focuses on the products in terms of reduced NAD, FAD and ATP. The engaging PowerPoint and accompanying resource have both been designed to cover the fifth part of point 5.2 of the AQA A-level Biology specification. The lesson begins with a version of the Impossible game where students have to spot the connection between 8 of the 9 terms and will ultimately learn that this next stage is called the Krebs cycle. The main part of the lesson challenges the students to use descriptions of the main steps of the cycle to continue their diagram of the reactions. Students are continually exposed to key terminology such as decarboxylation and dehydrogenation and they will learn where carbon dioxide is lost and reduced NAD and FAD are generated. They will also recognise that ATP is synthesised by substrate level phosphorylation. The final task challenges them to apply their knowledge of the cycle to work out the numbers of the different products and to calculate the number of ATP that must be produced in the next stage This lesson has been designed to tie in with the other uploaded lessons on glycolysis, anaerobic respiration, the Link reaction and oxidative phosphorylation.
Link reaction (AQA A-level Biology)
GJHeducationGJHeducation

Link reaction (AQA A-level Biology)

(0)
This clear and concise lesson looks at the role of the Link reaction in the conversion of pyruvate to acetyl coenzyme A which will then enter the Krebs cycle. The PowerPoint has been designed to cover the fourth part of point 5.2 of the AQA A-level Biology specification which states that students should know about this conversion and the production of reduced NAD The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that this stage occurs in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the Link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis and the Krebs cycle and oxidative phosphorylation.