By the end of the lesson learners will be able to:
Identify acceleration, constant velocity and deceleration on a velocity-time graph.
Describe how to calculate distance travelled using a velocity-time graph.
Compare the movement of two objects on a velocity-time graph.
By the end of the lesson learners should be able to:
State the equation for acceleration
Describe how to measure the acceleration of an object.
Explain why a change in acceleration indicates a change in direction
By the end of the lesson learners should be able to:
State the formula for speed.
Describe what’s shown in a distance-time graph
Explain why the gradient is the same as the speed on a distance-time graph.
Includes a simulation where you can use your webcam / student’s webcams to model distance time graphs based on movement toward / away from the screen.
By the end of the lesson learners should be able to:
Identify different types of waves.
Describe how to measure properties of waves.
Compare constructive and destructive interference.
A comprehension lesson that teaches students about the colours of light and how the primary colours contribute towards how we perceive objects around us. How objects reflect or absorb light colours. How filters influence light.
Progress checks are available following each success criteria
Tasks are differentiated to suit the needs of each learner.
Learning objective: Justify how filters can affect how we see an object.
By the end of the lesson learners should be able to:
Success criteria
Explain what happens when light passes through a prism
describe how primary colours add to make secondary colours
explain how filters and coloured materials subtract light.
Powerpoint contains 25 slides.
A comprehension lesson that teaches students about how the eye and the camera treat light. Students will have the opportunity to create a simple pinhole camera.
Progress checks are available following each success criteria
Tasks are differentiated to suit the needs of each learner.
Learning objective: Compare how the eye and the camera interpret light differently.
By the end of the lesson learners should be able to:
Success criteria:
Identify parts of the camera and the eye.
Describe how light is processed by the camera and the eye.
Compare the eye and the camera.
Powerpoint contains 15 slides.
A resource containing a comprehensive powerpoint slideshow that will allow for learners to learn about the law of reflection, specular reflection and diffuse scattering and how objects appear in mirrors (virtual images)
Tasks are differentiated to suit the needs of each learner.
Progress checks take place after each success criteria to measure the progress of learners.
An animation is included to show how a virtual image is generated.
By the end of the lesson students should be able to:
Learning objective: Develop an understanding of how light reflects and the law of reflection.
Success criteria:
Identify types of reflection.
Describe the law of reflection.
Explain the appearance of virtual objects.
This lesson contains 40 slides
By the end of the lesson learners should be able to:
State what is meant by refraction.
Describe how light refracts through mediums.
Explain why refraction is useful.
By the end of the lesson learners should be able to:
Identify metals and non-metals.
Describe 2 properties of metals and non-metals.
Explain why non-metals can harm the environment
By the end of the lesson learners should be able to:
Identify what is meant by oxidation and reduction.
Describe how halogens and metals react during displacement reactions.
Explain why transitions metals can bond to many different atoms.
By the end of the lesson learners should be able to:
•Identify the elements within periods 2 and 3.
•Describe how periods 2 and 3 will react with Oxygen.
•Explain the formula, state and structure of each element in period 2 and 3.
By the end of the lesson learners should be able to:
•Identify the S, P and D blocks.
•Describe what is meant by an ionisation energy.
•Explain why the ionisation energy changes through groups and periods.
By the end of the lesson learners should be able to:
Identify the trends in atomic radius across a period.
Identify the trend in atomic radius down a group.
Describe the trend in melting points across a period.
Explain why this trend occurs by mentioning the types of bonding.
Suitable for KS5 students (Yrs 17-18)
By the end of the lesson learners should be able to:
Identify the parts that make up the ear.
Describe how the ear manipulates sound.
Explain why people can experience hearing loss / damage.
A resource containing a comprehensive powerpoint slideshow that will allow for learners to learn about drag forces friction and air resistance.
Tasks are differentiated to suit the needs of each learner.
Progress checks take place after each success criteria to measure the progress of learners.
By the end of the lesson students should be able to:
Learning objective: Develop an understanding of how drag forces affect the movement of an object.
Success criteria:
Identify 2 drag forces.
Describe how drag forces affect objects.
Explain why air resistance and friction can be useful and a nuisance.
This lesson contains 22 slides
By the end of the lesson learners should be able to:
Identify independent and dependent variables.
Describe the effect of sucrose concentration on % change in mass
Explain why there is a change in mass in the potatoes.