Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1127k+Views

1931k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Nucleic acids, Genetics and Inheritance (Edexcel SNAB)
GJHeducationGJHeducation

Nucleic acids, Genetics and Inheritance (Edexcel SNAB)

16 Resources
This lesson bundle contains 16 lessons which have been designed to cover the Pearson Edexcel A-level Biology A (Salters Nuffield) specification points which focus on the structure of DNA and RNA, their roles in replication and protein synthesis, and genetics and inheritance. The lesson PowerPoints are highly detailed, and along with their accompanying worksheets, they have been planned at length to contain a wide range of engaging tasks which cover the following A-level Biology content found in topics 2, 3 and 6 of the course: 2.5 (i): Know the basic structure of mononucleotides (deoxyribose or ribose linked to a phosphate and a base, including thymine, uracil, cytosine, adenine or guanine) and the structures of DNA and RNA (polynucleotides composed of mononucleotides linked through condensation reactions) 2.5 (ii): Know how complementary base pairing and the hydrogen bonding between two complementary strands are involved in the formation of the DNA double helix 2.6 (i): Understand the process of protein synthesis (transcription) including the role of RNA polymerase, translation, messenger RNA, transfer RNA, ribosomes and the role of start and stop codons 2.6 (ii): Understand the roles of the DNA template (antisense) strand in transcription, codons on messenger RNA and anticodons on transfer RNA 2.7: Understand the nature of the genetic code 2.8: Know that a gene is a sequence of bases on a DNA molecule that codes for a sequence of amino acids in a polypeptide chain 2.11 (i): Understand the process of DNA replication, including the role of DNA polymerase 2.12 (i): Understand how errors in DNA replication can give rise to mutations 2.12 (ii): Understand how cystic fibrosis results from one of a number of possible gene mutations 2.13 (i): Know the meaning of the terms: gene, allele, genotype, phenotype, recessive, dominant, incomplete dominance, homozygote and heterozygote 2.13 (ii): Understand patterns of inheritance, including the interpretation of genetic pedigree diagrams, in the context of monohybrid inheritance 2.14: Understand how the expression of a gene mutation in people with cystic fibrosis impairs the functioning of the gaseous exchange, digestive and reproductive systems 2.15 (i): Understand the uses of genetic screening, including the identification of carriers, pre-implantation genetic diagnosis (PGD) and prenatal testing, including amniocentesis and chorionic villus sampling 2.15 (ii): Understand the implications of prenatal genetic screening 3.8 (i): The loci is a location of genes on a chromosome 3.8 (ii): The linkage of genes on a chromosome and sex linkage 3.12: Understand how cells become specialised through differential gene expression, producing active mRNA leading to synthesis of proteins, which in turn control cell processes or determine cell structure in animals and plants, including the lac operon 3.14 (i): Phenotype is an interaction between genotype and the environment 3.15: Understand how some phenotypes are affected by multiple alleles for the same gene at many loci (polygenic inheritance) as well as the environment and how this can give rise to phenotypes that show continuous variation 6.4: Know how DNA can be amplified using the polymerase chain reaction (PCR) 6.10: Understand how one gene can give rise to more than one protein through posttranscriptional changes to messenger RNA (mRNA).
Protecting endangered species (CIE A-level Biology)
GJHeducationGJHeducation

Protecting endangered species (CIE A-level Biology)

(0)
This lesson describes and discusses the different methods of protecting endangered species. The engaging PowerPoint and accompanying worksheets have been designed to cover point 18.3 [c] of the CIE A-level Biology specification and the methods described include zoos, botanic gardens, national parks, marine conservation zones and seed banks Hours of research has gone into the planning of this lesson to source interesting examples that increase the relevance of the biological content concerning in situ conservation, and these include the Lizard National Nature Reserve in Cornwall, the Lake Télé Community reserve in the Republic of Congo and the marine conservation zone in the waters surrounding Tristan da Cunha. Students will learn how this form of active management conserves habitats and species in their natural environment, with the aim of minimising human impact whilst maintaining biodiversity. The main issues surrounding this method are discussed, including the fact that the impact of this conservation may not be significant if the population has lost much of its genetic diversity and that despite the management, the conditions that caused the species to become endangered may still be present. A number of quick quiz competitions are interspersed throughout the lesson to introduce key terms and values in a fun and memorable way and one of these challenges them to use their knowledge of famous scientists to reveal the surname, Fossey. Dian Fossey was an American conservationist and her years of study of the mountain gorillas is briefly discussed along with the issue that wildlife reserves can draw poachers and tourists to the area, potentially disturbing the natural habitat. To enrich their understanding of ex situ conservation, the better known examples of ZSL London zoo, Kew Gardens and the Millennium Seed Bank Project in Wakehurst are used. Students will understand how conserving animal species outside of their natural habitat enables human intervention that ensures the animals are fed and given medical assistance when needed as well as reproductive assistance to increase the likelihood of the successful breeding of endangered species. As with the in situ method, the disadvantages are also discussed and there is a focus on the susceptibility of captive populations to diseases as a result of their limited genetic diversity. The final part of the lesson considers how seed banks can be used to ensure that plant species avoid extinction and how the plants can be bred asexually to increase plant populations quickly. Due to the extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of allocated A-level teaching time to cover the tasks and content that is included in the lesson.
The need to maintain biodiversity (CIE A-level Biology)
GJHeducationGJHeducation

The need to maintain biodiversity (CIE A-level Biology)

(0)
This lesson describes the reasons for the need to maintain biodiversity, which include those which are ecological, economic and aesthetic. The PowerPoint and accompanying resources have been designed to cover point 18.3 (b) of the CIE A-level Biology specification. Many hours of research have gone into the planning of the lesson so that interesting examples are included to increase the relevance of the multitude of reasons to maintain biodiversity. These include the gray wolves and beavers of Yellowstone National Park and the Za boabab in the Madagascar rainforests as examples of keystone species. Students will learn that these species have a disproportionate effect on their environment relative to their abundance and exam-style questions and guided discussion periods are used to challenge them to explain their effect on other species in the habitat. The CIE exams have a heavy mathematical content and this is reflected in this lesson as students are challenged to complete a range of calculations to manipulate data to support their biological-based answers. All of the exam questions that are included throughout the lesson have mark schemes embedded into the PowerPoint to allow the students to assess their progress. Moving fowards, the economic ans aesthetic reasons to maintain biodiversity are considered, and there is a focus on the soil depletion that occurs when a continuous monoculture is used. The 1 Billion tree scheme that began in New Zealand in 2018 is introduced and the reasons that some groups of people are objecting to what they consider to be a pine monoculture are discussed. Students will recognise that the clear felling of the trees dramatically changes the landscape and that the increased runoff that results can have catastrophic affects for both aquatic life and for humans with floods. A number of quiz competitions are included in the lesson to introduce key terms in a fun and memorable way and some of the worksheets have been differentiated to allow students of differing abilities to access the work
Inheritance of two genes (Edexcel A-level Biology B)
GJHeducationGJHeducation

Inheritance of two genes (Edexcel A-level Biology B)

(0)
This lesson describes the inheritance of two non-interacting unlinked genes and guides students through the calculation of phenotypic ratios. The PowerPoint and the accompanying question sheet (which is differentiated) have been designed to cover point 8.2 (iii) of the Edexcel A-level Biology B specification. As the previous lesson described the construction of genetic crosses and pedigree diagrams, students are aware of the methods involved in writing genotypes and gametes for the inheritance of a single gene. Therefore, the start of this lesson builds on this understanding to ensure that students recognise that genotypes contain 4 alleles and gametes contain 2 alleles when two genes are inherited. The students are taken through the steps of a worked example to demonstrate the key steps in the calculation of a phenotypic ratio before 2 exam-style questions challenge them to apply their newly-acquired knowledge. Mark schemes are displayed within the PowerPoint to allow students to assess their progress. The phenotypic ratio generated as the answer to the final question is 9:3:3:1 and time is taken to explain that this is the expected ratio when two heterozygotes for two genes are crossed which they may be expected to use when meeting the chi squared test in an upcoming lesson
Topic 8.2: Transfer of genetic information (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 8.2: Transfer of genetic information (Edexcel A-level Biology B)

6 Resources
Each of the 6 specification points in topic 8.2 of the Edexcel A-level Biology B specification are covered by the 6 lessons included in this bundle: (i) Understanding of the key genetic terms (ii) Be able to construct genetic crosses and pedigree diagrams (iii) Understand the inheritance of two non-interacting unlinked genes (iv) Understand that autosomal linkage results from the presence of alleles on the same chromosome (v) Understand sex linkage on the X chromosome (vi) Be able to use the chi squared test The lessons contain step by step guides that walk students through the key details of this topic, such as the construction of genetic crosses or the calculation of the chi squared value. There are also lots of exam-style questions to challenge the students to apply their understanding and the mark schemes that are embedded in the PowerPoints will allow them to assess their progress. The sex linkage lesson has been uploaded for free if you would like to sample the quality of lessons in this bundle.
Topic 18.1: Biodiversity (CIE A-level Biology)
GJHeducationGJHeducation

Topic 18.1: Biodiversity (CIE A-level Biology)

3 Resources
The following specification points in topic 18.1 of the CIE A-level Biology specification are covered by these three lessons: [a] Define the terms species, ecosystem and niche [b] Explain that biodiversity is considered at three levels [c] Explain the importance of random sampling in determining the biodiversity of an area [d] Use suitable methods to assess the distribution and abundance of organisms in a local area [e] Use Spearman’s rank correlation [f] Use Simpson’s index of diversity The lessons are detailed, engaging and contain exam-style questions with mark schemes embedded in the PowerPoint to allow the students to apply and assess their understanding
Sampling plant species (OCR A-level Biology A)
GJHeducationGJHeducation

Sampling plant species (OCR A-level Biology A)

(0)
This lesson describes how random and non-random sampling strategies can be carried out to measure the biodiversity of a habitat. The PowerPoint and accompanying worksheets are part of the first lesson in a series of 2 which have been designed to cover the content of point 4.2.1 (b) (i) of the OCR A-level Biology A specification and this lesson specifically focuses on sampling plant species. The second lesson covers the sampling of animal species using apparatus such as pooters and sweeping nets. The lesson begins with a challenge, where the students have to recognise the terms random and stratified from descriptions that were met in modules 2.1.6 and 3.1.1. This introduces the concept of sampling and emphasises its importance in the measurement of biodiversity and the students will learn that there is random sampling as well as non-random sampling, and that one of these strategies is known as stratified. The next part of the lesson focuses on the random sampling of a habitat where the results found with a quadrat are used to estimate the population of sessile species like plants. Due to the heavy mathematical content in the A-level Biology exams, a step by step guide is used to walk the students through the key stages in these calculations and includes the extra steps needed when the quadrat does not have an area of 1 metre squared. A series of exam-style questions will then challenge them to apply their understanding and mark schemes are embedded in the PowerPoint to allow them to immediately assess their progress. The use of quadrats that have been divided into 100 squares and point frames to estimate percentage ground cover are also discussed and the overall advantages and disadvantages of random sampling are considered. Moving forwards, the stratified, opportunistic and systematic strategies of non-random sampling are discussed and again the advantages and disadvantages of all three are considered. Time is taken to focus on line and belt transects and students will learn that the latter can be particularly useful when an abiotic factor appears to change across a habitat.
Meiosis (WJEC A-level Biology)
GJHeducationGJHeducation

Meiosis (WJEC A-level Biology)

(0)
This lesson describes the main stages of meiosis and has a specific focus on those events which contribute to genetic variation. The detailed PowerPoint and accompanying resources have been designed to cover point (d) in topic 6 of AS unit 1 of the WJEC A-level Biology specification and includes description of crossing over, independent assortment, independent segregation and the production of haploid gametes In order to understand how the events of meiosis like crossing over and independent assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent assortment and segregation of chromosomes and chromatids during metaphase I and II and anaphase I and II respectively results in genetically different gametes. The key events of all of the 8 phases are described and there is a focus on key terminology to ensure that students are able to describe genetic structures in the correct context. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam-style questions which challenge the students to apply their knowledge to potentially unfamiliar situations. This lesson has been specifically planned to lead on from the previous two lessons on the cell cycle and the main stages of mitosis and constant references are made throughout to encourage students to make links and also to highlight the differences between the two types of nuclear division
Cardiac cycle, SAN and Purkyne fibres (WJEC A-level Biology)
GJHeducationGJHeducation

Cardiac cycle, SAN and Purkyne fibres (WJEC A-level Biology)

(0)
This lesson describes the roles of the SAN and Purkyne fibres in the coordination of the three stages of the cardiac cycle. The PowerPoint and accompanying resources are part of the first lesson in a series of 2 lessons that have been designed to cover point [c] in topic 3 of AS unit 2 of the WJEC A-level Biology specification and has a specific focus on the pressure changes that occur in each stage of the cycle The start of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by diastole. Students are challenged on their prior knowledge of the structure of the heart as they have to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the next part of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. This rest of the lesson focuses on the roles of the SAN and Purkyne fibres as well as the AVN and the bundle of His in the coordination of the heartbeat, continually linking back to the work on the cycle. The SAN is introduced as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology.
Structure & function of blood vessels (WJEC A-level Biology)
GJHeducationGJHeducation

Structure & function of blood vessels (WJEC A-level Biology)

(0)
This lesson describes how the structure of arteries, arterioles, capillaries, venules and veins in the mammalian circulatory system relate to their functions. The PowerPoint and accompanying resources are part of the second lesson in a series of 2 lessons which have been designed to cover specification point (b) of topic 3 in AS unit 2 of the WJEC A-level Biology A specification. The first lesson in this series covers the structure and function of the human heart and its associated blood vessels This lesson has been written to build on any prior knowledge from GCSE or earlier in this topic to enable students to fully understand why a particular type of blood vessel has particular features. Students will be able to make the connection between the narrow lumen and elastic tissue in the walls of arteries and the need to maintain the high pressure of the blood. A quick version of the GUESS WHO game is used to introduce smooth muscle and collagen in the tunica media and externa and again the reason for their presence is explored and explained. Moving forwards, it is quite likely that some students will not be aware of the transition vessels that are the arterioles. This section begins with an understanding of the need for these vessels because the structural and functional differences between arteries and capillaries is too significant. The action of the smooth muscle in the walls of these vessels is discussed and students will be challenged to describe a number of situations that would require blood to be redistributed. The middle part of the lesson looks at the role of the capillaries in exchange and links are made to diffusion to ensure that students can explain how the red blood cells pressing against the endothelium results in a short diffusion distance. The remainder of the lesson considers the structure of the veins and students are challenged to explain how the differences to those observed in arteries is due to the lower blood pressure found in these vessels.
Human heart (WJEC A-level Biology)
GJHeducationGJHeducation

Human heart (WJEC A-level Biology)

(0)
This lesson describes the structure and function of the human heart and names the blood vessels associated with this organ . The PowerPoint and accompanying resources are part of the first lesson in a series of 2 lessons that have been designed to cover point (b) in topic 3 of AS unit 2 of the WJEC A-level Biology specification As this topic was covered at GCSE, the lesson has been planned to build on this prior knowledge whilst adding the key details which will enable students to provide A-level standard answers. The primary focus is the identification of the different structures of the heart but it also challenges their ability to recognise the important relationship to function. For example, time is taken to ensure that students can explain why the atrial walls are thinner than the ventricular walls and why the right ventricle has a thinner wall than the left ventricle. Opportunities are taken throughout the lesson to link this topic to the others found in topic 3 including those which have already been covered like circulatory systems as well as those which are upcoming such as the initiation of heart action. There is also an application question where students have to explain why a hole in the ventricular septum would need to be repaired if it doesn’t naturally close over time.
A2 unit 4, topic 3: Inheritance (WJEC A-level Biology)
GJHeducationGJHeducation

A2 unit 4, topic 3: Inheritance (WJEC A-level Biology)

6 Resources
This bundle of 6 lessons has been designed to cover the following specification points in topic 3 of A2 unit 4 of the WJEC A-level Biology specification: [a]: alleles as different forms of the same gene [b]: the principles of monohybrid Mendelian inheritance including simple crosses involving codominance [c]: the principles of dihybrid Mendelian inheritance including simple crosses involving linkage [d]: the use of the chi squared test [e]: sex linkage as illustrated by haemophilia and Duchenne muscular hypertrophy [f]: gene mutation as illustrated by sickle cell anaemia and chromosome mutations as illustrated by Down syndrome Each of the lessons is fully-resourced and contains a wide range of tasks that will engage and motivate the students whilst covering the detailed content of this topic. Any exam questions that are found in the resources have markschemes embedded into the PowerPoint If you would like to see the quality of lessons included in this bundle, then download the alleles & monohybrid inheritance and gene mutation lessons as these have been shared for free
The effect of pH on enzymes (AQA A-level Biology)
GJHeducationGJHeducation

The effect of pH on enzymes (AQA A-level Biology)

(0)
This lesson describes the effects of pH on the rate of enzyme-controlled reactions. The PowerPoint and accompanying resources are part of the third lesson in a series of 5 lessons which have been designed to cover the content of point 1.4.2 (Many proteins are enzymes) of the AQA A-level Biology specification. The lesson begins with a short discussion, where the students are challenged to identify how the stomach and the small intestine differ in terms of a particular condition and to explain why the conditions in these neighbouring digestive organs are so important. This introduces pepsin and trypsin and these protease enzymes play a key role throughout the lesson as they are good examples of how different extracellular enzymes have different optimum pH values (which are not necessarily 7.0). Moving forwards, students will discuss how the rate of an enzyme-controlled reaction will change if there are small or large changes in pH, and then time is taken to ensure that students can explain these changes with reference to tertiary structure bonds and the shape of the active site. Through the use of a quick quiz competition, the students will be reminded of the key term “buffer” and a series of questions are used to challenge their understanding of how these substances could be used in a practical investigation. They will also learn how buffers are found in blood plasma as well as in red blood cells in the form of haemoglobin. With there being such a large proportion of marks for Maths in a Biology context questions in the AQA assessments, the remainder of the lesson challenges the students to use a given formula to calculate the pH of blood when given the hydrogen ion concentration and to calculate percentage decrease. These questions have been differentiated to give assistance to those that need the support
Effect of pH on enzyme-catalysed reactions (CIE A-level Biology)
GJHeducationGJHeducation

Effect of pH on enzyme-catalysed reactions (CIE A-level Biology)

(0)
This lesson describes the effects of pH on the rate of an enzyme-catalysed reaction. The PowerPoint and accompanying resources are part of the second lesson in a series of 4 lessons which have been designed to cover the content of point 3.2 (a) of the CIE A-level Biology specification. The lesson begins with a short discussion, where the students are challenged to identify how the stomach and the small intestine differ in terms of a particular condition and to explain why the conditions in these neighbouring digestive organs are so important. This introduces pepsin and trypsin and these protease enzymes play a key role throughout the lesson as they are good examples of how different extracellular enzymes have different optimum pH values (which are not necessarily 7.0). Moving forwards, students will discuss how the rate of an enzyme-controlled reaction will change if there are small or large changes in pH, and then time is taken to ensure that students can explain these changes with reference to tertiary structure bonds and the shape of the active site. Through the use of a quick quiz competition, the students will be reminded of the key term “buffer” and a series of questions are used to challenge their understanding of how these substances could be used in a practical investigation. They will also learn how buffers are found in blood plasma as well as in red blood cells in the form of haemoglobin. As there is a considerable proportion of marks for Maths in a Biology context questions in the A-level assessments, the remainder of the lesson challenges the students to use a given formula to calculate the pH of blood when given the hydrogen ion concentration and to calculate percentage decrease. These questions have been differentiated to give assistance to those that need the support
Topic 3.2: Factors that affect enzyme action (CIE A-level Biology)
GJHeducationGJHeducation

Topic 3.2: Factors that affect enzyme action (CIE A-level Biology)

5 Resources
This bundle of 5 lessons covers the majority of the content in topic 3.2 of the CIE A-level Biology specification. Each lesson consists of an engaging Powerpoint with accompanying resources that cover the following points: Explain the effects of temperature on the rate of an enzyme-catalysed reaction Explain the effects of pH on the rate of an enzyme-catalysed reaction Explain the effects of enzyme and substrate concentration on the rate of an enzyme-catalysed reaction Explain the effects of inhibitor concentration on the rate of an enzyme-catalysed reaction Explain the effects of inhibitors, both competitive and non-competitive, on the rate of enzyme activity Explain the effect of immobilising an enzyme in alginate on its activity as compared with its activity when free in solution
Heart and circulatory system (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Heart and circulatory system (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes how the structure of the heart and the circulatory system is related to its function. The PowerPoint lesson and accompanying resources have been designed to cover the detail of point 8.8 of the Edexcel GCSE Biology and Combined Science specifications and includes descriptions of the role of the major blood vessels, the heart valves, and the relative thickness of the chamber walls. The lesson starts with an extract from Friends and challenges the students to recognise that full sized aortic pumps is a thesaurus version of big hearts. This reiterates the basic function of the heart that was met at KS2 and KS3 and moving forwards, the students will learn that it is the contraction of the cardiac muscle in the walls of the four heart chambers that allows this to happen. Students are provided with a diagram throughout the lesson which will be annotated as new structures are encountered and they begin by labelling the two atria and ventricles. The focus of the lesson is the relationship between structure and function so time is taken to consider the different roles of the atria and ventricles, as well as the right ventricle versus the left ventricle. Students will be able to observe from their diagram that the left ventricle has the thickest wall and they will be challenged to explain why later in the lesson once more detailed knowledge has been added. The next part of the lesson introduces the pulmonary artery and vein and a task challenges the students to consider the relationship between the heart and the lungs, and their prior knowledge of the adaptations of the alveoli is also tested. The remainder of the lesson discusses the double circulatory system and the heart valves. Understanding checks are found throughout the lesson and mark schemes are embedded into the PowerPoint to allow the students to assess their progress.
Osmosis (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

Osmosis (AQA GCSE Biology & Combined Science)

(0)
This concise lesson has been designed to cover the content found in specification point 4.1.3.2 (Osmosis) of topic 1 of the AQA GCSE Biology & Combined Science specifications. This resource contains an engaging PowerPoint (23 slides) and accompanying worksheets, some of which have been differentiated to help students of different abilities to take on the task at hand. The lesson begins with the introduction of the term, osmosis, and then students are challenged to use their knowledge of diffusion to write a definition for this method of movement of water molecules. A series of questions which check understanding are included at this early point of the lesson to ensure that the key points are known and any misconceptions are quickly addressed. Students are also challenged with an application question as these can often cause them the most problems. Moving forwards, the rest of the lesson focuses on an osmosis investigation. Scientific skills are tested during a range of tasks as well as numerical skills and guidance is given on how to calculate percentage change. As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but can be used with younger students who are keen to learn about osmosis
The human nervous system (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

The human nervous system (AQA GCSE Biology & Combined Science)

(0)
This lesson has been designed to cover the content as detailed in point 5.2.1 (The structure and function of the human nervous system) of the AQA GCSE Biology & Combined Science specifications. Consisting of a detailed and engaging PowerPoint (38 slides) and accompanying worksheets, the range of activities will motivate the students whilst ensuring that the content is covered in detail. Students will learn how receptors, sensory neurones, the CNS, motor neurones and effectors are involved in the detection and response to a stimulus. Reflex reactions are also considered and discussed so that students can recognise how these automatic and rapid responses avoid damage and pain to humans. Progress checks are included throughout the lesson so that students can assess their understanding of the content and any misconceptions can be addressed whilst quiz competitions, like FROM NUMBERS 2 LETTERS and YOU DO THE MATH, are used to introduce new terms and important values in a fun and memorable way. This lesson has been written for GCSE-aged students who are studying the AQA GCSE Biology or Combined Science specifications but can be used with older students who need to know the key details of the nervous system for their A level course before taking it to greater depths
Control of body temperature (AQA GCSE Biology)
GJHeducationGJHeducation

Control of body temperature (AQA GCSE Biology)

(0)
The engaging Powerpoint and accompanying worksheet which come as part of this lesson resource have been designed to cover specification point 5.2.4 (Control of body temperature) as detailed in the AQA GCSE Biology specification. A wide range of activities which include Biology and Maths tasks and quiz competitions are interspersed with understanding and prior knowledge checks so that students are engaged and motivated whilst learning the key content in a memorable way and checking their progress. Students will learn that the body temperature is maintained at 37 degrees celsuis by a homeostatic control system called thermoregulation and will be challenged to recall the topic of enzymes to explain why this is so important. Time is taken to look at the responses brought about the effectors such as vasodilation and shivering and students will recognise how these lead a decrease or increase in body temperature back to the set point. Links are also made between the Sciences so that there is a deeper understanding of exactly why sweating cools the body down. This lesson has been designed for students studying the AQA GCSE Biology course but is suitable for older students who are studying Biology at A-level and need to recall the key details of thermoregulation.
Homeostasis (WJEC GCSE Biology)
GJHeducationGJHeducation

Homeostasis (WJEC GCSE Biology)

(0)
This fully-resourced lesson has been designed to cover the content found in specification point 2.5 (f) of the WJEC GCSE Biology specification which states that students should understand why animals need to regulate the conditions inside their bodies. This resource contains an engaging and detailed PowerPoint (45 slides) and accompanying worksheets The lesson begins by challenging the student’s literacy skills as they are asked to recognise the key term, optimum, from 6 of its’ synonyms. Moving forwards, a range of quiz competitions are used to introduce the term homeostasis and to provide a definition for this key process. Students are given a newspaper article about water and blood glucose so they can recognise 2 conditions which are controlled in the human body. The next part of the lesson looks at the importance of maintaining the levels of water and glucose by considering the medical problems that could arise if they move away from the optimum levels. Students will learn that body temperature is also controlled and links are made to earlier knowledge as they have to explain why an increase in temperature above the set point would be an issue because of the denaturation of enzymes. The rest of the lesson looks at the three parts that are included in all control systems before a final quiz round introduces the receptors, coordination centre and effectors in the control of body temperature. As stated at the top, this lesson has been designed for GCSE-aged students who are studying the WJEC GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the process in more detail