Hero image

GJHeducation's Shop

Average Rating4.51
(based on 918 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1210k+Views

2017k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic C3: Physical chemistry (Edexcel iGCSE Chemistry)
GJHeducationGJHeducation

Topic C3: Physical chemistry (Edexcel iGCSE Chemistry)

12 Resources
This bundle of 12 lessons covers the majority of the content in Topic C3 (Physical chemistry) of the Edexcel iGCSE Chemistry specification. The sub-topics and specification points covered within these lessons include: [a] Energetics Know that chemical reactions can be endothermic or exothermic reactions Calculate the heat energy change using the expression involving specific heat capacity Draw energy level diagrams to represent endothermic and exothermic reactions Use bond energies to calculate the enthalpy change [b] Rates of reaction Describe experiments to investigate the effect of changing surface area, concentration, temperature and the addition of a catalyst on the rate of reaction Describe and explain the effects of changing surface area, concentration and temperature on a rate of reaction with reference to the collision theory Know the definition of a catalyst and understand how it reduces the activation energy of a chemical reaction Draw and explain reaction profile diagrams [c] Reversible reactions and equilibria Know that some reactions are reversible Know the characteristics of a reaction at dynamic equilibrium Know the effect of changing either the temperature of pressure on the position of the equilibrium All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Significant figures (Maths in Science)
GJHeducationGJHeducation

Significant figures (Maths in Science)

(0)
A fully resourced lesson which includes an informative lesson presentation (25 slides) and an associated worksheet that show students how to give answers to a certain number of significant figures. The answers to questions in Science are often required to be given in significant figures and this lesson guides students through this process, including the rules of rounding that must be applied for success to be likely. This lesson has been designed for GCSE students but is suitable for KS3
Motion and forces REVISION (Edexcel GCSE Physics topic 2)
GJHeducationGJHeducation

Motion and forces REVISION (Edexcel GCSE Physics topic 2)

(0)
This lesson has been written to act as a revision tool for students at the completion of topic 2 of the Pearson Edexcel GCSE Physics specification or in the lead up to mock or terminal exams. This motion and forces topic is extensive and the engaging PowerPoint and accompanying resources have been designed to include a wide range of activities to allow the students to assess their understanding and to recognise any areas which need extra attention. This specification is heavy in mathematical content and so a lot of opportunities are presented for a range of skills to be tested and the PowerPoint guides students through the application of these requirements such as rearranging the formula and converting between units. The following specification points have received a particular focus in this lesson: Factors affecting thinking and braking distance Calculating the distance travelled from the area under the velocity-time graph Recalling and using the equations to calculate acceleration, force, speed, weight and momentum Calculating uniform acceleration from a velocity-time graph Resultant force and constant velocity Forces and velocity as vector quantities Circular motion The difference between mass and weight The law of the conservation of momentum A number of quick quiz rounds, such as FILL THE VOID and WEIGHT A MINUTE, are used to maintain engagement and motivation and to challenge the students on their recall of important points. It is estimated that it will take in excess of 2 hours of GCSE teaching time to cover the detail included in this lesson
Distance-time graphs
GJHeducationGJHeducation

Distance-time graphs

(1)
A highly engaging and information lesson presentation (46 slides) which guides students through the steps needed to construct an accurate distance-time graph and then teaches them how to interpret the motions that are shown by the different lines. The lesson challenges the students to work out the type of graph that should be used to present the data and to suggest which factor from the blank table should go on the x-axis. Using the results that they obtain, a step-by-step guide is used to walk students through constructing the graph. This includes deciding on scales to ensure they are even and make the most of the available paper. Student will see the four key terms of motion associated with these graphs (acceleration, deceleration, constant speed and stationary) and will be able to use their graph to work out which lines go with which motion. Moving forwards, students will be shown how to calculate speed from the graph. There are progress checks throughout the lesson so that students can assess their understanding of the topic. This lesson has been designed for GCSE students but is perfectly suitable for KS3 students too.
Stopping distances
GJHeducationGJHeducation

Stopping distances

(0)
A fully-resourced lesson that looks at the meaning of thinking, braking and stopping distances and focuses on the factors that would cause each of them to increase. The lesson includes an engaging lesson presentation (45 slides) and an associated worksheet for the calculations. The lesson begins by introducing the term stopping distance and then challenging students to recognise that both the distance travelled during the driver’s reaction time and under the braking force will contribute to this. Students are constantly challenged to think about the factors that would cause either the thinking or braking distance to increase and to be able to explain why scientifically. Moving forwards, the mathematical element that is associated with this topic is explored as students are shown how to calculate the braking distance at different speeds as well as convert between speeds in miles per hour and metres per second. There is also a set homework included as part of the lesson. There are regular progress checks written into the lesson so that students can assess their understanding. This lesson has been written for GCSE students but could be used with those at KS3.
Electromagnetic Waves
GJHeducationGJHeducation

Electromagnetic Waves

(0)
A fully-resourced lesson that looks at the 7 electromagnetic waves, their differences, similarities and uses. The lesson includes an engaging presentation (54 slides) and associated worksheets. The lesson begins with a number of engaging activities to get the students to find out the names of the 7 waves in the spectrum. Students will be challenged to use their knowledge of the properties of waves to explain why they have been arranged in this particular order. Moving forwards, some time is taken to ensure that students recognise the similarities of the waves. The rest of the lesson focuses on the uses of the waves and a homework is also set to get students to increase the number of uses that they know for each wave. There are regular progress checks throughout the lesson so that students can assess their understanding at critical points. This lesson has primarily been designed for GCSE students (14 - 16 year olds in the UK) but could be used with students at KS3 who are doing a project
Hooke's Law
GJHeducationGJHeducation

Hooke's Law

(0)
An engaging, practical-based lesson presentation (22 slides), accompanied by a practical worksheet and application questions which together explore how the extension of a spring is related to force according to Hooke’s Law. The lesson begins by introducing the name of the law and looking at the equation which connects the force, extension and spring constant. As spring constant is likely to be a new term to students, time is taken to look at the definition of this key term. Students are given hints throughout the lesson about potential issues to look out for, including the unit of spring constant being N/m when the majority of springs are small enough that their extension will be measured in cm or mm. Moving forwards, students will follow the provided experimental method to carry out the investigation and produce a set of results which can be used to plot the line. The two distinct sections of the line are discussed and the actual words of Hooke’s Law are given and again discussed and considered. The final part of the lesson involves the students being challenged to apply their knowledge of the law to a range of application questions and assessing against the displayed mark scheme. This lesson has been written for GCSE students but can be used with KS3 students who are studying the extension of a spring
AQA GCSE Combined Science Paper 6 REVISION (Physics Topics P5 - P7)
GJHeducationGJHeducation

AQA GCSE Combined Science Paper 6 REVISION (Physics Topics P5 - P7)

(0)
This is a fully-resourced revision lesson that could be used over a series of lessons to help students to revise and assess their knowledge of the content that is found in topics P5 (Forces), P6 (Waves) and P7 (Magnetism and electromagnetism) of the AQA GCSE Combined Science specification and will be assessed in Paper 6 This revision lesson uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to cover the following sub-topics and specification points: Scalar and vector quantities Contact and non-contact forces Gravity Work done and energy transfer Forces and elasticity Speed Velocity Acceleration Newton’s laws of motion Momentum Conservation of momentum Transverse and longitudinal waves Properties of waves The EM waves Fleming’s left-hand rule This lesson contains a big emphasis on the mathematical calculations that will be involved in these exams, and as a result students are challenged to recall the equations and to apply them. Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams. A lot of the tasks have been differentiated so that students of all abilities can access the work and be challenged appropriately.
OCR Gateway A GCSE Physics Module P6 (Radioactivity) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Physics Module P6 (Radioactivity) REVISION

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Module P6 (Radioactivity) of the OCR Gateway A GCSE Physics specification. The sub-topics and specification points that are tested within the lesson include: The atomic nuclei Recognising and representing isotopes Unstable nuclei and the emission of radiation Writing balanced equations to represent radioactive decay Explain the concept of half-life and carry out calculations to determine the half-life or time taken for decay Recall the different penetrating powers of alpha, beta and gamma Be able to describe the processes of nuclear fission and fusion Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
Edexcel GCSE Combined Science Topic P14 REVISION (Particle model)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic P14 REVISION (Particle model)

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic P14 (Particle model) of the Edexcel GCSE Combined Science specification. The sub-topics and specification points that are tested within the lesson include: Explain the different states of matter in terms of movement and arrangement of particles Recall and use the equation to calculate density Explain the differences in density between the different states of matter Describe how mass is conserved during changes of state and understand how these physical changes differ from chemical changes Define the terms specific heat capacity and specific latent hear and explain the differences between them Use the equations to calculate change in thermal energy and thermal energy for a change in state Knows way to reduce unwanted energy transfer Describe the term absolute zero, in terms of the lack of movement of particles Convert between the kelvin and Celsius scales Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
AQA GCSE Physics PAPER 1 REVISION LESSONS
GJHeducationGJHeducation

AQA GCSE Physics PAPER 1 REVISION LESSONS

4 Resources
This bundle of fully-resourced revision lessons will engage and motivate the students whilst they assess their understanding of the content of topics 1 - 4 of the AQA GCSE Physics specification as assessed in PAPER 1. The lessons cover the following topics: Topic 1: Energy Topic 2: Electricity Topic 3: Particle model of matter Topic 4: Atomic structure The detailed PowerPoints and accompanying resources contain exam-style questions with clear explanations of answers, differentiated tasks, class discussions and quiz competitions. If you would like to see the quality of the lessons, download the topic 1 revision lesson which has been shared for free
Conservation of energy REVISION (Edexcel GCSE Physics Topic 3)
GJHeducationGJHeducation

Conservation of energy REVISION (Edexcel GCSE Physics Topic 3)

(0)
This revision lesson contains a wide range of activities that will challenge the students on their knowledge and understanding of the content detailed in topic 3 (Conservation of energy) of the Pearson Edexcel GCSE Physics specification. These activities include exam style questions which will allow the students to assess their progress against the clearly explained answer. There is also a quiz that runs throughout the course of the lesson and this has been designed to maintain engagement and motivation. The following specification points have been covered in this lesson: Recall and use the equation to calculate the gravitational potential energy Recall and use the equation to calculate the kinetic energy Explain what is meant by the conservation of energy Explain that mechanical transfers become wasteful when energy is dissipated to the surroundings Explain ways of reducing unwanted energy transfers Recall and use the equation to calculate efficiency Describe the main energy sources available for use on Earth and explain their patterns and trends in the use of energy resources
OCR Module P5 (Energy) REVISION (Gateway A GCSE Combined Science)
GJHeducationGJHeducation

OCR Module P5 (Energy) REVISION (Gateway A GCSE Combined Science)

(0)
An engaging lesson presentation (43 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit P5 (Energy) of the OCR Gateway A GCSE Combined Science specification The topics that are tested within the lesson include: Conservation of energy Efficiency Energy transfer by heating Mechanical energy transfers Students will be engaged through the numerous activities including quiz rounds like “The TRANSFER market” whilst crucially being able to recognise those areas which need further attention
OCR Gateway A GCSE Combined Science Module P1 (Matter) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science Module P1 (Matter) REVISION

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Module P1 (Matter) of the OCR Gateway A GCSE Combined Science specification. The sub-topics and specification points that are tested within the lesson include: Describe how the atomic model has changed over time Define density Measure length, volume and mass to calculate density Explain the differences in density between the different states of matter in terms of the arrangements of atoms and molecules Describe how physical changes differ from chemical changes Define the term specific heat capacity and distinguis between this term and specific latent heat Carry out calculations to apply the equations involving specific heat capacity and specific latent heat Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
CIE IGCSE Physics Topic 2 REVISION (Thermal Physics)
GJHeducationGJHeducation

CIE IGCSE Physics Topic 2 REVISION (Thermal Physics)

(0)
This engaging revision resource has been written with the sole aim of challenging students on their knowledge of both the Core and Supplement sections of TOPIC 2 of the Cambridge IGCSE Physics specification. The resource includes an engaging PowerPoint (68 slides) and accompanying worksheets, some of which are differentiated. The wide range of activities in the lesson which include exam questions with explained answers and quiz competitions will motivate the students whilst they evaluate and assess their knowledge of the content and recognise those areas which will require further attention. The lesson has been designed to cover as many parts of the topic as possible, but the following sub-topics have been given a particular focus: The properties of solids, liquids and gases Conduction, convection and radiation Melting and boiling points Boiling vs evaporation Specific latent heat The structure and action of liquid-in-glass thermometers The use of thermocouples Specific heat capacity The mathematical elements of the topic are covered throughout the lesson and students are given helpful hints to support them in structuring their answers. This resource can be used at the end of the topic or in the lead up to the mocks or the actual IGCSE terminal examinations.
Edexcel IGCSE Physics TOPICS 1-4 REVISION
GJHeducationGJHeducation

Edexcel IGCSE Physics TOPICS 1-4 REVISION

4 Resources
This bundle of fully-resourced revision lessons will engage and motivate the students whilst they assess their understanding of the content of topics 1 - 4 of the Pearson Edexcel IGCSE Physics specification. The lessons cover the following topics: Topic 1: Forces and motion Topic 2: Electricity Topic 3: Waves Topic 4: Energy resources and energy transfers The detailed PowerPoint and accompanying resources contain exam-style questions with clear explanations of answers, differentiated tasks, class discussions and quiz competitions. If you would like to see the quality of the lessons, download the topic 1 revision lesson which is shared for free
Edexcel GCSE Physics Topic 9 REVISION (Forces and their effects)
GJHeducationGJHeducation

Edexcel GCSE Physics Topic 9 REVISION (Forces and their effects)

(0)
This revision lesson has been filled with activities that will challenge the students on their knowledge and understanding of the content detailed in topic 9 of the Pearson Edexcel GCSE Physics specification. The wide range of activities in the engaging PowerPoint and accompanying resources will check on the knowledge of the forces and their effects topic and allow the students to recognise those areas which need further attention before the mock or terminal GCSE exams. This resource has been designed to cover as much of topic 9 as possible but the following points have received particular attention: What happens when objects can interact at a distance without contact What happens when objects can interact by contact Explain the difference between vector and scalar quantities using examples Draw free body diagrams Recall and use the equation to calculate the moment of a force Recall and use the principle of moments in situations where rotational forces are in equilibrium Explain ways of reducing unwanted energy transfer through lubrication The main task of the lesson which challenges students to use the principle of moments has been differentiated so that differing abilities can access the work
CIE IGCSE Combined Science Topics P5 & P6 REVISION
GJHeducationGJHeducation

CIE IGCSE Combined Science Topics P5 & P6 REVISION

(0)
This is a fully-resourced revision lesson which covers the content detailed in the CORE & SUPPLEMENT sections of topics P5 & P6 (Electrical quantities and electric circuits) of the CIE IGCSE Combined Science specification. The engaging PowerPoint and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quiz competitions to allow students to assess their understanding and to ultimately recognise those areas which need further consideration. The following specification points have been given particular attention in this lesson: The electrical symbols that represent the electrical components Describe the differences between series and parallel circuits Recall that a voltmeter is connected in parallel One volt is equal to one joule per coulomb Recall and use the equations that calculate charge, potential difference and power Recall that an ammeter is connected in series Calculate the currents, potential differences and resistances in series and parallel circuits Know the safety function of the fuse Understand that like charges repel and unlike charges attract This lesson has been designed to fall in line with the heavy mathematical content of the Physics specification with a number of calculation tasks and students are guided through the range of skills that they will have to employ
CIE IGCSE Combined Science P4 REVISION (Properties of waves)
GJHeducationGJHeducation

CIE IGCSE Combined Science P4 REVISION (Properties of waves)

(0)
This fully-resourced revision lesson covers the CORE and SUPPLEMENT sections of topic P4 (Properties of waves, including light and sound) of the CIE IGCSE Combined Science specification. The engaging PowerPoint and acccompanying resource have been written to include a wide range of activities which include exam-style questions (with clearly explained answers), differentiated tasks and quick quiz competitions. These activities challenge the following specification points: State the meaning of speed, frequency, wavelength and amplitude Distinguish between transverse and longitudinal waves and give examples Describe how waves can undergo reflection and refraction and that the latter is caused by a change in the wave speed Recall and use the law of reflection Describe the main features of the EM spectrum State that all waves travel at the speed of light in a vacuum and recall this speed Describe the uses of the EM waves Describe the longitudinal nature of sound waves Recall and use the equation to calculate wave speed Describe how to measure the speed of sound in air and ripples on water surfaces Recall that sound waves can be ultrasound To fall in line with the greater mathematical content of the specification, there is a large emphasis on a range of mathematical skills in this lesson which includes the use of standard form. Due to the detail of this lesson, it is estimated that it will take in excess of 2 hours of IGCSE-allocated teaching time to cover the content and this allows this to be used at the end of the topic or in the lead up to mock or terminal examinations.
WJEC GCSE Physics Topic 2.4 REVISION (Further motion concepts)
GJHeducationGJHeducation

WJEC GCSE Physics Topic 2.4 REVISION (Further motion concepts)

(0)
This revision lesson is fully-resourced and differentiated to allow students of differing abilities to assess their understanding of topic 2.4 (Further motion concepts) of the WJEC GCSE Physics specification. The engaging and detailed PowerPoint and accompanying resources contain exam-style questions, quick tasks, discussion points and a quiz competition which check on the following specification points: The qualitative relationship between mass and velocity in the calculation of momentum Application of the law of the conservation of momentum to perform calculations involving collisions Applying the kinetic energy equation to compare the size of this energy store before and after an interaction Newton’s second law in the form force = change in momentum over time Using equations to model the motion of an object The principle of moments To fall in line with the specification, there is a big emphasis on mathematical skills in this lesson and students are given guidance and assistance to ensure that they can access the work