Hero image

SWiftScience's Shop

Average Rating4.24
(based on 769 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

839k+Views

476k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE Trilogy (2016) Biology - Specialised Cells Homework
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Specialised Cells Homework

(0)
This task is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Cells’ SoW. For more resources designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This activity contains a set of differentiated questions worth 20 marks in total, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension or revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work against their target grades, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Transport in Plants Homework
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Transport in Plants Homework

(0)
This task is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Organisation’ SoW. For more resources designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This activity contains a set of differentiated questions worth 20 marks in total, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension or revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work against their target grades, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Health & Lifestyle Homework
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Health & Lifestyle Homework

(0)
This homework activity is designed for the KS3 Science Course, specifically Year 8 B2.1 Module on ‘Health & Lifestyle’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
KS3 ~ Year 7 ~ Structure & Function of Body Systems Homework
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Structure & Function of Body Systems Homework

(3)
This homework activity is designed for the KS3 Science Course, specifically Year 7 B1.2 Module on ‘Structure & Function of Body Systems’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Ethics of gene technlogies
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Ethics of gene technlogies

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with pupils think > pair > sharing some of the advantages and disadvantages of genetic technologies that they have learnt about so far. Following this pupils will watch a selection of videos about genetic modification, pupils will need to listen and write down any advantages or disadvantages they pick up from the videos. For higher ability pupils you could extend this task by asking them to consider the organisations behind the videos and why they may have certain viewpoints. Pupils will then be given a card sort in groups, the cards demonstrate concerns and benefits of gene technologies. Pupils can discuss the information and use it to finish off the table of advantages and disadvantages they started with the previous task. This task can be self-assessed using the mark scheme provided. The next activity requires pupils to complete a newspaper articles on the pro’s and con’s of gene technologies, within the articles pupils must represent the viewpoints of an organic farmer, a charity campaigner, a doctor, an ecologist, a scientist working on a new gene technology. The final activity is an exam-style question. Pupils can complete this in their books and self-assess their work once they are finished. The plenary activity is for pupils to pick a task, either unscramble 5 anagrams to reveal key words or write a summary sentence including a number of key words from the lesson All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Inheritance, variation and evolution' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Inheritance, variation and evolution' lessons

12 Resources
This bundle of resources contains 11 lessons which meet all learning outcomes within the 'Inheritance, variation & evolution' unit for the NEW AQA Biology Specification. Lessons include: 1. Meiosis 2. DNA & protein synthesis 3. Inherited disorders & genetic screening 4. Variation 5. Selective breeding 6. Genetic engineering 7. Ethics of gene technologies 8. Evolution by natural selection 9. Evidence for evolution - Fossils 10. Extinction 11. Evolution of antibiotic resistant bacteria The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Biology - Health & Wellness
SWiftScienceSWiftScience

NEW AQA GCSE Biology - Health & Wellness

(4)
This resource includes PowerPoint presentations for two lessons and it covers all of the specification points for the NEW AQA Infection and Response unit. The first lesson identifies the difference between health and wellness. Pupils will then be introduced to the idea of communicable and non-communicable diseases, they will then determine whether different diseases are either communicable or non-communicable and consider the similarities/differences of the disease within each category. The last activity of the lesson is to produce a mind map of risk factors which could increase the chance of a non-communicable disease. The second lesson will start with recapping on the risk factors which can increase the likelihood of non-communicable diseases and students will need to think about whether specific risk-factors relate to specific diseases. We will also analyse the most preventable threats to health globally. Pupils then answer then ‘Think, Pair’ Share’ on why governments might run ‘keep healthy’ campaigns, what benefit might that be to the government and to it’s citizens. Pupils discuss and then answer questions on this topic. Plenary - recapping on the key words related to these two lessons.
NEW AQA GCSE Trilogy (2016) Biology - DNA & Protein Synthesis
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - DNA & Protein Synthesis

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a recap on the relative sizes of structures found within the cell, starting with nucleotides & building up to nucleus and then cell. The next task requires pupils to answer questions about the human genome whilst watching a video. This work can then be self-assessed using the mark scheme provided in the PowerPoint presentation. The next part of the lesson shows students the structure of a DNA nucleotides and of the overall double-helix structure of DNA. Pupils will then watch a video on the process of protein synthesis, pupils will need to answer questions whilst watching this video. Pupils can then self-assess their work using the mark scheme provided. The final activity is for pupils to complete an exam-style question, pupils then either self-assess or peer-assess their work using the mark scheme provided. The plenary task is for pupils to write a list of key words from the lesson today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Biology - The response to exercise
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - The response to exercise

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Bioenergetics’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with a think > pair > share task for pupils to discuss some questions about muscle, after a short class discussion you can the answers to these questions and talk them through with the students (all on the PowerPoint). Next pupils can sum up what they have learnt so far by completing a fill in the blank task, which then can be self-assessed. Now pupils will be given cards of information about how heart rate, breathing rate and concentrations of glycogen change during exercise and most importantly, why these response occur. Pupils can read their information card in pairs and using this they can fill in the table in their books. This activity is likely to take 15-20 minutes, once finished they can self-assess their work using the answers provided. A mid-plenary task will quickly assess students knowledge of what they have learnt so far, then the final activity is a 10 mark exam-style question. You could allow pupils more time to answer these questions or for higher ability set a 10 minute timer and request that they complete in silent, exam conditions. The mark scheme is provided for pupils to mark their own work. The plenary task is a 4-mark exam question with mark scheme provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Mitosis
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Mitosis

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on mitosis begins with a review of cells, viruses, and a discussion about the differences between mitosis and meiosis. To begin discussing mitosis, students will watch a short video describing the cell cycle and make notes on a worksheet. They can self-assess with the following slide and discuss any missing information. The next few slides are lecture style, they teach chromosome structure and define mitosis. Students should answer the discussion question “why is mitosis such an important process in organisms?” To check their discussion, points to note can be found in the ‘notes’ section under the slide. The lesson then defines each phase of mitosis before asking students to complete a jumbled sentence activity to synthesise their notes on the phases. The worksheet features jumbled sentences, and diagrams of the phases of mitosis for matching. The un-jumbled sentences are in the following slide so students may self-assess their worksheets. The next section defines cytokinesis in plant and animal cells then asks students to identify the stages of mitosis by microscopic images. They should give reasons for their choices and the answers can be found in the ‘notes’ part of the slideshow. This activity is built on through a mini-whiteboard activity in which students should identify the stages of the cell cycle and explain what is happening during this stage. The lesson ends with an exam style question which asks students to explain how mitosis leads to two identical cells. A mark scheme for this question is on the following slide. The plenary task is to complete a sentence in their book reflecting on their learning throughout the lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Disruption to Food Chains & Webs
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Disruption to Food Chains & Webs

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.2 Ecosystem Processes. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with an introduction to the term ‘interdependence’ - students are given the defintion for this term. They are also asked to think of ways in which animals and plants depend on each other within an ecosystem, students can brain storm their ideas in their books. The answers will then be revealed using the PowerPoint presentation, students should check and correct their work. The next part of the lesson focuses on how changes in an ecosystem can affect animal populations, students will be asked four questions which they should discuss with their partner before writing their ideas down on a piece of A3 paper. The answers to these questions will then be revealed using the PowerPoint, so students can self-assess their work. Next, students will be shown a food web from a marine ecosystem and students will need to answer a set of questions using this food web. The questions focus on what will happen to certain animal populations if others increase/decrease/are wiped out. Students can answer these questions in their books, they can then self-assess their work using the answers provided. Students will now be given a set of information on stable communities. Students should read the piece of information and using this will need to answer a set of questions. The answers can be self-assessed using the mark scheme provided in the PowerPoint. Lastly, students will read an article (link included) on bioaccumulation in killer whales. Students should read the article and try to come up with a definition for the term ‘bioaccumulation’, once students have had a go at this task, the correct definition for this term will be revealed so students can self-assess their work. The plenary activity requires students to write three quiz questions based upon what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Unhealthy Diet
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Unhealthy Diet

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.1 Health & Lifestyle. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with images of people who are obese, underweight or have a vitamin deficiency (e.g. rickets). Students are asked to ‘Think > Pair > Share’ their ideas about whether these people are malnourished or not? Students should have a few minutes to discuss their ideas, before sharing the class. The PowerPoint then moves on to identify that each of the individuals are malnourished, as they are either taking on too much/too little nutrients. Students are now asked to consider how people might lose weight, students can create a mind map in their books. Once students have had a chance to discuss their ideas with the class, some ideas can be revealed so students can mark and correct their own work. This then follows into a ‘copy and complete’ task, where students should complete a set of sentences to summarise what they learned so far this lesson. This work can also be self-assessed using the mark scheme available. Students should now complete the mid-lesson progress check, which is a ‘true or false’ activity. Students are given a set of statements, they should indicate using mini whiteboards/write down their answers in their books, the answers can then be revealed for students to check their answers. Next, students are given a task which allows them to work out how much fat they are eating each week. Students can consider a list of statements, identify how many apply to them and add them up to give a rating out of 5, the higher the rating the more unhealthy their diet is. Lastly, students are asked to write a letter to a person who is overweight/obese to give them some information about the health problems which are associated with being overweight and explain some methods which they could employ to help them to lose weight. The plenary task is an anagram challenge, students are given a set of anagrams which are words associated with what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Smoking
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Smoking

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.1 Health & Lifestyle. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with some facts and figures about the rates of smoking around the world, how many cigarettes are smoked daily and the different chemicals found in cigarette smoke and which of these are linked with disease. Students will now watch a video on the chemicals found in cigarette smoke and the damage these chemicals can do to the body, whilst watching the video students will need to answer a couple of questions. The answers to these questions are then revealed using the PowerPoint, students can self-assess their work. Students will now watch another video on smoking and the effect on your health, students will be given a set of questions that they will need to answer using the video. Once this task is complete, students will self-assess their work using the mark scheme provided. The latter part of the lesson involves an activity whereby students will be given a worksheet of questions, there will be information posters placed around the room which students will need to use to answer questions on their worksheet. The mark scheme for this task is included in the PowerPoint presentation for students to peer-assess their work with their partners. Students will then need to complete a ‘feedback quadrant’ of their partners work, this includes a positive comment, something they missed out which should have included and a question to test their understanding of the lesson content. The very last task requires students to read a graph of information on the death rates due to different smoking-related illnesses. Students should answer the set of questions using the data, this task can then be self-assessed using the mark scheme provided. The plenary requires students to write three sentences to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Eukaryotic Cell Structure
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Eukaryotic Cell Structure

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins with a starter discussion to review materials from the ‘biological molecules’ module. Students are then asked to begin thinking about types of cell by having a ‘think > pair > share’ discussion to define eukaryotic cells and their features. They can compare their answers to the diagram on the next slide which outlines of the main features of eukaryotic cells. The first task of this lesson is for students to fill in their worksheet using information cards about each organelle. Students should synthesise the information, not just copy it into their worksheet. The worksheet and information cards are available at the end of the slideshow. Using their mini whiteboards students are then guided to identify some photomicrographs from scanning and transmission electron microscopes. They should identify if the photomicrograph was taken by a scanning or transmission electron microscope, and bonus points if they can name the organelle! Students are then given another worksheet task to fill in the blanks and can self-assess using the following slide. The plenary task is to write a tweet about what they’ve learned! All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Methods of Studying Cells
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Methods of Studying Cells

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! To begin this lesson on the methods of studying cells, students will review previous lessons by discussing the nature of water and the reasons water is important to living organisms. Students should also discuss the properties of ATP and the importance of those properties. Students will then learn some of the basics of different microscopes. The slides then explain magnification and resolving power. To prepare students to calculate total magnification, the students will work through a review slide on units of measurement then practise some unit conversions on their mini whiteboards! The next few slides define total magnification and explain how to make sense of the actual size of a specimen. The previous exercise on unit conversion will be helpful here! A final example is shown before students are given a task with two magnification questions to complete in their books. They can self-access to the following slide. Students can then complete an included worksheet on magnification calculation, answers are available on the next slide for self or partner-assessment. The attached Magnification Questions sheet also includes worked answers. To explain cell fractionation students will watch a quick video then answer a few questions. The stages of cell fractionation are then set out in detail on the following slides, extra thoughts can be found in the notes below the slides. Students can then complete a grid activity to demonstrate each stage in their books. The plenary task is to create quiz questions to test their peers on the methods of studying cells. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – HIV
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – HIV

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on the human immunodeficiency virus begins with a starter discussion on immunity and vaccination. Students should discuss the features of a successful vaccination program, and why vaccination cannot often eliminate a disease. Students are then introduced to the structure of HIV and its function as a retrovirus. To explain the infection process students will watch a short video while answering questions in their books. Answers are available on the following slide for self-assessment. The next task is a worksheet for students to label and correctly describe each stage of HIV infection and replication. They can self-asses to the next slide. Students will then discuss the process by which HIV causes the symptoms of AIDS. The following slides explain the function of antibiotics and explain why these are not suitable for treating viruses. In order to introduce the ELISA test, students will watch two short animations and answer questions in their books. Answers are on the following slide for self-assessment. They should take thorough notes in their book, on two diagrams of indirect and direct ELISA. The plenary is to write a tweet demonstrating their learning, including #keywords! All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) specification - Defence Mechanisms
SWiftScienceSWiftScience

NEW AQA GCSE (2016) specification - Defence Mechanisms

(4)
This is a lesson from the NEW AQA specification on defence mechanisms of the body, from the ‘Infection and Response’ module. This lesson is part of a 12 lesson bundle for the NEW ‘Infection & Response’ Unit, found in my TES shop - https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by recapping on what a communicable disease is and what risk factors can increase the likelihood of a communicable disease spreading from person to person. Students are then given an outline of a human body, they will need to label it with the various different ways pathogens can enter the body. Pupils can then mark and check their work against the examples on the PowerPoint slide. Students then discuss how your body may stop pathogens entering via these various different entry routes and you can use the information on the PowerPoint slide to highlight these various defence mechanisms. Pupils can spend time annotating their diagram to display these defences and peer-assess their work - R/A/G. Next, is the introduction of white blood cells, you can explain their different roles using the diagrams on the PowerPoint slide and by use of the video/animation links. Pupils should then fill in a table of information using as many key words as possible, pupils should self-assess their work to check for the correct use of the key terms. Plenary - past-paper question which I get pupils to complete in silence and hand to me as they leave (exit card). I will then mark and grade it for the next lesson, but equally they could complete and mark within the lesson. All resources are included within the PowerPoint presentation. Enjoy :)
OCR GCSE (9-1) Biology - The transpiration stream
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - The transpiration stream

(0)
This lesson is designed to meet specification points for the NEW AQA Trilogy GCSE Biology ‘Scaling up’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly be introduced to guard cells and stomata and how they are able t control the loss of water from the plant, diagrams of guard cells turgid and flaccid will help with this description. Pupils will then be given a set of questions which they will complete using a video, once completed pupils can then assess their work using the answers provided. The next slide shows the process of transpiration, pupils are shown a diagram and then descriptions of each stage in the transpiration process are shown stage by stage. You may need lower ability pupils to copy the stages up off the board in note form first. For higher ability pupils after you have gone through it a couple of times you can move the slide forward and pupils will need to write a description of the process of transpiration using the list of key words and diagram as a cue. After this has been completed pupils will then focus on the factors affecting the rate of transpiration, pupils will each be given a slip of information about a factor and how it affects the loss of water from the plant. Pupils will need to swap information with those around them to complete their table. If pupils do not quite finish this task they can assess their work using the completed table provided in the PowerPoint. The last activity is for pupils to complete exam questions on the topic of the lesson. Pupils will be given 6 minutes as it is worth 6 marks, they should try and complete the question in silence at the back of their books if possible. The plenary task is for pupils to write down 6 key words from the lesson.
OCR GCSE (9-1) B1 Cell-Level System lessons
SWiftScienceSWiftScience

OCR GCSE (9-1) B1 Cell-Level System lessons

13 Resources
This bundle of resources contains 13 lessons which meet all learning outcomes within the ‘Cell-level systems’ unit for the NEW OCR Gateway Biology specification. Lessons include: Plant and animal cells Prokaryotic cells Light microscopy Electron microscopy DNA Transcription & Translation Enzymes & Enzyme Reactions Aerobic Respiration Anaerobic Respiration Photosynthesis Products of Photosynthesis Factors affecting Photosynthesis Interaction of Limiting Factors The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
OCR GCSE (9-1) B2 Scaling Up Lesson Bundle
SWiftScienceSWiftScience

OCR GCSE (9-1) B2 Scaling Up Lesson Bundle

12 Resources
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Scaling Up’ unit for the NEW OCR Gateway Biology specification. Lessons include: Diffusion Osmosis Active Transport Mitosis Cell differentiation Stem Cells Exchange & Transport The Circulatory System The Heart & Blood Transport Systems in Plants The Transpiration Stream Factors affecting Transpiration The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.