I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Motion & Pressure’.
More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to moments, by using a door opening by it’s hinges as an example. Student are shown an animation of a man trying to push a door open close to the hinges and far from the hinges of the door, demonstrating it is easier further from the hinges. Students are then introduced to the calculation - moment = force x distance from the pivot.
Students are then shown a worked example using the calculation, before being presented with a problem to solve themselves. Next, students are shown a diagram of a man pushing down on one side of a see saw, at the other side is a bag of money. This diagram is labeled to show the effort force, pivot and load.
Students are then given a worksheet on levers, students will need to identify the effort force, pivot and load in each of the diagrams and also match the key words to the correct definition. This work can be self-assessed using the mark scheme provided once it is complete.
The last two tasks are assessment tasks, firstly students will copy and complete the paragraph, using the key words provided, to summarise what they have learned this lesson. This can then be self-assessed using the mark scheme provided. Lastly, students are presented with a set of moment problems, using the calculation they learned at the beginning of the lesson students will need to work through these calculations. The mark scheme for this task is also included so students can self-assess or peer-assess their work.
The plenary task requires students to spend a minute talking to the person next to them about what they have learned this lesson.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Forces in Action’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to moments, using a spanner. Students are then introduced to the calculation - moment = force x distance from the pivot.
Students are then shown a worked example using the calculation, before being presented with a problem to solve themselves. Next, students are shown a diagram of a man pushing down on one side of a see saw, at the other side is a bag of money. This diagram is labeled to show the effort force, pivot and load.
Students are then given a worksheet on levers, students will need to identify the effort force, pivot and load in each of the diagrams and also match the key words to the correct definition. This work can be self-assessed using the mark scheme provided once it is complete.
The last two tasks are assessment tasks, firstly students will copy and complete the paragraph, using the key words provided, to summarise what they have learned this lesson. This can then be self-assessed using the mark scheme provided. Lastly, students are presented with a set of moment problems, using the calculation they learned at the beginning of the lesson students will need to work through these calculations. The mark scheme for this task is also included so students can self-assess or peer-assess their work.
Lastly, students will be shown a diagram of apparatus which can be used to investigate the turning effect of a force. Students are asked some questions about this investigation, they will then need to complete a ‘Quick Check’ task which will assess students knowledge of what they have learned this lesson. This task can then be self-assessed using the mark scheme provided.
The plenary task requires students to copy and complete a sentence starter to summarise what they have learned this lesson.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated
The plenary task requires students to write a Whatsapp message to summarise what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 11 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Electricity’ unit for the NEW AQA Physics Specification.
Lessons include:
Electrical circuits
Electrical charges & fields
Current & charge
Electrical current & energy transfers
Electrical power & potential difference
6 Resistance & potential difference
7 Series & parallel circuits
8 Cables & plugs
9 Alternating current
Appliances & efficiency
Current-Potential difference Graphs
The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This bundle of resources contains 7 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 8 P2 1.1 'Energy’ Unit.
Lessons include:
Foods as Fuel
Energy Stores & Transfers
Energy & Temperature
Energy Transfers: Conduction & Convection
Energy Transfers: Radiation
Energy Resources
Energy & Power
Energy & Work
The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This is a resource which meets specification points for the NEW AQA GCSE Physics 'Energy' module.
The lesson begins by introducing the concept of gravitational potential energy stores, pupils will have learnt about this in the first lessons from this module on 'Energy stores' (found in my TES shop - https://www.tes.com/teaching-resources/shop/SWiftScience).
Pupils are then given the first calculation needed to calculate the change in gravitational potential energy of an object (weight x height). Pupils can then practise using this calculation by copying and completing the task on the next slide. Pupils will self-assess their work, answers provided on a PowerPoint slide.
Pupils are then introduced to the second calculation they can use to calculate the change in gravitational potential energy of an object (mass x gravitational field strength x height). Pupils can then complete questions 1-5 on the worksheet provided and once finished they can self-assess their work.
The final activity is for pupils to look at a past-paper question, with their partners they can discuss how to go about answering the question. Following a class discussion pupils can attempt to answer the question and then self-assess their work. **For higher ability pupils they can complete the question without the class discussion**.
The plenary is a '30 second conversation', pupils turn to their partners and talk about what they have learnt this lesson for 30 seconds.
All resources are included at the end of the PowerPoint.
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Motion & Pressure’.
More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with a demonstration - the collapsing can. Students should hopefully be able to identify that the can that collapsed had a lower pressure inside the can than outside the can, causing the can to collapse inwards.
This leads into a description of gas pressure, including a diagram to help demonstrate the concept. Students will now ‘Think > Pair > Share’ their ideas about what could cause an increase in pressure, after a short discussion the answers will be revealed to students - increasing the number of particles and increasing the temperature or reducing the size of the particles.
Students will now complete a task based upon what they have learned so far this lesson, this can be self-assessed using the mark scheme provided.
Students will now complete an investigation called ‘What makes a ball bouncy?’. Students will investigate whether a ball becomes more bouncy the more/less pumps of air it has in it. Students will copy the table of results into their books, draw a graph of their results and complete analysis questions. This task can be self-assessed once complete.
Lastly, students are introduced to the idea of atmospheric pressure and shown a diagram which represents the density of air particles at the top of the mountain compared to the bottom.
The plenary task requires students to complete one of the sentence starters in their books to summarise what they have learned this lesson.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P2 ’Sound’.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
Students will firstly be introduced to the main features of a wave - amplitude, frequency and wavelength. Students can sketch a diagram of a wave into their books and take notes on the main features.
Students are now introduced to transverse and longitudinal waves, students will need to know the differences between the direction of the oscillations of these two waves. Students are then asked to discuss how a ‘slinky’ could be used to demonstrate these two waves, after a short class discussion students can be shown an animation to demonstrate how a slinky shows these two types of wave. Students will now get into groups and come up with a short role-play to demonstrate the differences between these two waves.
Students will now complete a progress check where they will need to copy and complete a paragraph to summarise what they have learned so far this lesson. This task can then be self-assessed using the mark scheme provided.
A diagram of a longitudinal wave which shows the differences between rarefactions and compressions is shown to students, they will then need to answer a set of questions. The answers to this task are included in the PowerPoint so students can self-assess their work once it is complete.
Next, students will need to ‘Think > Pair > Share’ their ideas about what happens when two or more waves join together. Students can discuss their ideas first before being shown a video demonstrating the process of superposing waves. Students will then complete a fill-in-the-blank task to summarise what they have learned this lesson.
The plenary task requires students to write a WhatsApp message to tell their friends what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 7 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 8 'Electricity & Magnetism’ Unit.
Lessons include:
Charging Up
Current & Charge
Resistance
Potential difference
Series & Parallel Circuits
Magnets & Magnetic Fields
Electromagnets
The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This bundle of resources contains 4 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 7 P4 ‘Space’ Unit.
Lessons include:
The Night Sky
The Solar System
The Earth
The Moon
The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.1 unit on ‘Electricity & Magnetism’.
The lesson begins with a question for pupils to ‘Think > Pair > Share’ their ideas about what they already know about magnets. This can be discussed in a group, before feeding back to the classroom. Students will now complete a practical investigation: testing magnetic materials, in groups they will be given a selection of materials and a bar magnet, they will need to determine which materials are magnetic. Once complete, students can check their work against the answers provided.
Next, students will investigate what happens when the poles of two bar magnets are brought together. Students will be given a set of combinations to try: N + N, S + N, S + S - attract or repel? Their results can be recorded in a table in their books and then be assessed using the mark scheme once complete.
The next part of the lesson focuses on magnetic fields; firstly, students are shown the magnetic field of a bar magnet. They will have a go at drawing their own - they will have a worksheet, on it is lots of of circles surrounding a bar magnet, on each of the circles they will place a compass and then draw the direction the arrow is facing. Once complete, students should link up the arrows to show the direction of the magnetic field, they can stick this worksheet into their books.
The last part of the lesson focuses on the magnetic field surrounding Earth, students are shown diagrams to demonstrate this idea and then will assess their knowledge of the subject by getting students to complete a fill-in-the-blanks task. This task can be self-assessed using the mark scheme provided in the PowerPoint presentation.
The plenary task requires students to summarise what they have learned this lesson in three sentences.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a recap of the three main types of radiation: alpha, beta and gamma radiation. Students will firstly be asked to draw and label a diagram to show how each of these types of radiation can be stopped.
Students will then be given some information about the penetrating power of these three types of radiation, using the information and their own knowledge students will need to complete a summary worksheet. Once this has been completed students can self-assess their work using the mark scheme provided.
The next part of the lesson will focus on the dangers of radiation, firstly students will be shown a teacher/technician demonstration of the different types of radiation, outlining some of the dangers and precautions taken when handling radioactive sources. Students can complete a table of information on the relative dangers of these radioactive sources whilst watching the demo. This work can self-assessed against the mark scheme provided once it is complete.
Next, pupils are asked to ‘Think > Pair > Share’ ideas about how scientists/workers can protect themselves against the hazards of ionising radiation. After a short class discussion the answers can be revealed for students to check their work and take extra notes if necessary.
Lastly, students are asked to think about the uses of radiation, they will be given a list and they will need to determine which are real uses of radiation. The real uses of alpha, beta and gamma radiation can then be revealed on the PowerPoint presentation - students can check their answers and take notes on extra uses.
The plenary task is for students to talk to the person next to them for one minute about what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed to meet specification points from the NEW AQA GCSE 'Energy' module. For more lessons within this series please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson begins with pictures demonstrating the 5 energy stores, pupils will need to discuss and decide on what these energy stores might be using the pictures.
Once pupils have identified the energy stores (these can be written down on the whiteboard) pupils will then need to complete sentences which describe each of the energy stores, sentence starters are provided.
Pupils are then given a slide with pictures which demonstrate examples of energy transfers, pupils again will need to identify the different ways in which energy can be transferred using the pictures.
The next part of the lesson will focus on energy transfer flow diagrams, pupils will need to describe the energy transfers taking place in different systems, including a torch, candle & TV. There is a worksheet at the end of the PowerPoint which pupils can use to complete these tasks. When finished, pupils can self-assess their work.
Pupils will then answer some progress check questions in their books, I usually ask pupils to complete in silence to reflect on what they have learnt this lesson. Pupils will then self-assess their work.
The final task is a past-paper question, pupils can complete on the sheet and peer-assess their work using the mark scheme provided.
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P2 ’Sound’.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This lesson begins with a definition of ‘Friction’, students can take notes on this and then ‘Think > Pair > Share’ their ideas about how friction can be reduced. Two ideas that are then revealed are lubrication using oil/grease or smoothing surfaces down in order to reduce friction.
Students will then need to complete worksheet on frictional forces, once students have completed this task they can either self-assess or peer-assess their work using the mark scheme provided.
Next, students are introduced to the idea of a ‘drag force’, including the examples of air resistance and water resistance. Students will then need to create a mind map listing the ways in which the effect of drag forces could be reduced. Once students have discussed and noted their ideas down, their answers can be checked using the answers provided on the PowerPoint.
In the last activity students will be given a set of statements, they will need to sort these statements into either either a ‘True’ or ‘False’ column. Students can then self-assess or peer-assess their work using the mark scheme provided.
The plenary task is a ‘Pick a Plenary’ - so students can either summarise what they have learned in three sentences, or write a definition for a list of key words that students would have learned over the course of the ‘Forces’ topic so far.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P1 ’Forces’.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This lesson begins with ‘Think > Pair > Share’ activity which asks students to look at a photo of a tug-of-war and asks students to decide which side would win and why. After a short discussion, students will be introduced to the idea of ‘balanced’ and ‘unbalanced’ forces, including examples.
Students will now complete an investigation on ‘Forces’, this is a circus activity which requires students to decide which two forces are acting on each of the objects. Students will also need to decide if the forces are balanced or unbalanced, their results can be recorded in the table provided.
Students will be asked a series of questions on the effects of balanced and unbalanced forces acting upon an object, the first questions is on a cyclist. This work can then be self-assessed using the mark scheme provided. The next questions are on the forces acting upon a car, this can be competed in their books and the work can be marked and corrected using the mark scheme provided.
The last part of the lesson focuses on how forces can change the direction of an object, students are shown the example of the Moon orbiting the Earth due to the pull of gravitational force acting upon the Moon.
The plenary task requires students to write down three facts, three key words and pose one question to test their peers knowledge of what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 7 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Molecules & Matter’ unit for the NEW AQA Physics Specification.
Lessons include:
Density of Materials
States of Matter
Changes of State
Internal Energy
Specific Latent Heat
Gas Pressure & Temperature
Gas Pressure & Volume
The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This bundle of resources contains 5 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 7 P1 ‘Forces’ Unit.
Lessons include:
Introduction to Forces
Stretching & Squashing Forces
Friction & Drag Forces
Forces at a Distance: Non-contact Forces
Balanced & Unbalanced Forces
The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Molecules & Matter’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Firstly, students are asked to ‘Think > Pair > Share’ their ideas about how a gas exerts pressure upon a surface. Students will need to discuss their ideas within groups before feeding back the class, the explanation can then be revealed using the PowerPoint presentation - including a diagram.
Students will then watch a video on gas pressure and temperature, students will need to answer a set of questions whilst watching the video. Once this has been completed students can self-assess their working using the mark scheme provided.
Students are now shown some information on an investigation into the effect of temperature on gas pressure, using the PowerPoint presentation. Students will need to read the information and and answer questions on a worksheet, this work can then be self or peer assessed using the mark scheme provided.
Lastly, students are now given an information sheet about observing random motion of gas particles using a smoke within a smoke cell. Students will be given a set of questions that they will need to answer after reading the information sheet, they can work together in pairs. The mark scheme for this task is included in the PowerPoint so students can assess and correct their work once this is complete.
The plenary task requires pupils to complete a set of sentence starters to summarise what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This homework activity is designed for the KS3 Science Course, specifically Year 8 B2.1 Module on ‘Energy’
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class.
I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included.
Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
This homework activity is designed for the KS3 Science Course, specifically Year 7 P1.2 Module on ‘Sound’
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class.
I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included.
Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
This homework activity is designed for the KS3 Science Course, specifically Year 8 B2.1 Module on ‘Motion & Pressure’
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class.
I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included.
Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)