Hero image

SWiftScience's Shop

Average Rating4.24
(based on 768 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

835k+Views

475k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
KS3 ~ Year 8 ~ Resistance
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Resistance

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.1 unit on ‘Electricity & Magnetism’. The lesson begins with an introduction to resistance, students are provided with a definition which they can write down in their books, as well as a diagram to depict what happens to electrons as they flow around the metal wires within a circuit. Students will then complete a ‘copy-and-complete’ task, this can be marked using the mark scheme provided. Students are now asked to ‘Think > Pair > Share’ their ideas about whether the thickness of the wire would affect the resistance of the wire. Students will discuss their ideas with their peers, share their ideas with the class and then watch a video to find out the answer. Students can then summarise their findings in their books by completing a fill-in-the-blank task, this can then be self-assessed once complete. Students will now be introduced to Ohm’s law, which links the resistance of a component to the current running through it and potential difference across it. Students will be given an equation triangle, they can copy this down into their books and use this to complete the set of problems on the next slide. This work can be marked and corrected once complete. Lastly, students are asked to ‘Think > Pair > Share’ their ideas about which materials are good conductors and insulators. Students can discuss their ideas and write them down into their books, answers are then revealed for students to check their work against. The last assessment task is a ‘Copy and correct’ task, students are given a paragraph of information which they will need to copy and correct the mistakes as they go. Once complete, this can be marked using the mark scheme provided. The plenary task is a choice of two tasks - to summarise what students have learned in three sentences or to write a definition for a set of key words. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Electromagnets
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Electromagnets

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.1 unit on ‘Electricity & Magnetism’. The lesson begins with an introduction to electromagnets, students are shown a diagram of an electromagnet and told how an electromagnet is made; students can make a note of these details in their books. This follows into a video, students will watch the video and whilst watching will be given a series of questions to answer. Once this task is complete, students can then self-assess their work against the mark scheme that is provided. Students will now be asked to consider what might affect the strength of an electromagnet, students can be given a few minutes to come up with their ideas in pairs before feeding back into a class discussion. Students will now complete an investigation into whether the following two factors - number of coils of wire & voltage - will affect the strength of an electromagnet. Students should follow the instructions provided on the PowerPoint presentation and complete the table of results in their books. Once the investigation has been completed, students will complete a ‘Quick Check’ task in their books to assess their knowledge of what they have learned this lesson. The mark scheme for this is included for students to self-assess their work once it is complete. Lastly, students will complete a ‘Copy and Correct’ task whereby students will need to copy a paragraph of information into their books, correcting any of the information that they seem to be erroneous. This task can also be checked against the answers provided on the PowerPoint presentation. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Loudness & Pitch
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Loudness & Pitch

(1)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P2 ’Sound’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction into how sound can be ‘seen’ by using an oscilloscope. The PowerPoint then moves on to look at the differences between the ‘intensity’ of a sound and the ‘pitch’ of the sound. Students can copy and complete a set of sentences to summarise what they have learned so far as part of a ‘progress check’ - this work can then be marked using the mark scheme included. Students will then be given two different sound waves, they will need to use what they have learned so far to write a description/comparison of each of the waves, a list of key words will be provided to hep students. A model answer to this question is included in the PowerPoint so students can self-assess their work once it is complete. Students will now be given a worksheet of sound waves, along with a worksheet describing the sounds collected by the ‘Most Haunted’ team of a range of ghost sounds. Students will need to compare the description of the ghosts to the sound waves collected and match them correctly. This work can then be marked and corrected using the answers provided on the PowerPoint. Students will now think about the frequencies that humans can hear compared to other animals. The first activity requires students to watch a video which plays a set of sounds starting with a frequency of 500 Hz to 20,000 Hz. Students can put their hands up in the air until they can no longer hear the sound, you will need to turn the volume right up! Students are then told the audible range of humans compared to other animals like dolphins, hedgehogs and bats. The plenary activity requires students to complete a set of sentences, including outlining what they have learned today, what they already knew and what they would like to know more about. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Pressure on Solids
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Pressure on Solids

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Motion & Pressure’. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a a ‘Think > PAir > Share’ task, students are provided with some information about ice road truckers, students are asked to consider whether the job of an ice road trucker is too risky. Students are also asked to discuss the meaning of the term ‘pressure’ - after a short class discussion the definition for the term ‘pressure’ will be revealed to students, they can make a note of this in their books. Students are now introduced to the formula for pressure (pressure = force / area), using this formula students will complete a couple of tasks where they will work through a set of pressure problems. Once complete this task can then be self-assessed using the mark scheme provided. Students will now complete an activity where they will work out the pressure they exert on the ground. Lastly, students will complete a ‘copy and correct’ task, they will be given a paragraph of information related to what they have learned this lesson. They will need to copy it out, correcting any parts they believe to be wrong. This task can the self-assessed using the mark scheme provided once it is complete. The plenary task requires students to complete an ‘exit card’ to summarise what they have learned this lesson, the exit card will include three key words, one fact and one questions for students to test their peers knowledge of what was learned this lesson. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated
KS3 ~ Year 8 ~ Series & Parallel Circuits
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Series & Parallel Circuits

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.1 unit on ‘Electricity & Magnetism’. This lesson begins with an introduction to both series and parallel circuits, students can make a note of the definition for each and also draw the example circuit diagram into their books. Next, students will be shown four circuit diagrams and will need to determine whether the circuit is a parallel or a series circuit. The answers to this task can then be revealed using the PowerPoint, so students can assess their work. Students will now watch a video on series and parallel circuits, they will need to answer a set of questions whilst watching this video. The mark scheme for this task is included in the PowerPoint presentation, so students can self-assess their work using the mark scheme provided. The latter part of the lesson focuses on current and potential different in series and parallel circuits. Firstly, students will be shown a diagram which shows that current anywhere in a series circuit will be the same and shows current in the main part of the parallel circuit will get divided up between each branch. Students will then use this information to complete a worksheet, this work can then be self-assessed using the mark scheme provided. Next, students will look at how potential difference across components in a series circuit is different to that of a parallel circuit. Students will then work out the potential difference of voltmeters found in four different circuit diagrams, this task can then be marked and corrected using the answers provided. The plenary is a ‘pick a plenary’ task, students need to choose to either summarise what they have learned in three sentences or write a definition for a set of key words related to the topic of electricity. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Physics (2016) - Kinetic Energy
SWiftScienceSWiftScience

NEW AQA GCSE Physics (2016) - Kinetic Energy

(3)
This lesson is aimed at the new GCSE specification, on the topic of ‘Energy’. More lessons from this series can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils begin by considering what types of objects have a store of kinetic energy and then they can ‘Think, Pair, Share’ - what factors might affect how much kinetic energy an object actually has? The lesson then moves on to show pupils the calculation to work out kinetic energy, you can work through two model questions with pupils on the board. Pupils are then given a table where the calculation is broken down into sections. They are given the mass and the speed of an object, they will need to calculate 0.5 x mass in one column and the speed squared in another - from this they can calculate the kinetic energy. Once complete pupils can assess their work using a red pen. The next part of the lesson introduces how to rearrange the equation and then an activity follows with slightly harder calculations on kinetic energy, where they may be required to use the rearranged equation. Self-assessment of work when complete. **Higher ability students should now have a go at the past-paper question from the NEW AQA GCSE specimen material, they can complete the question and mark their work using the mark scheme provided** The plenary is game of ‘equation bingo’ - the students write 6 equations/words/phrases into their books, you describe their meaning and if students have the correct equation/word/phrase they can cross them out of their book. The first person to cross all of them out correctly can shout bingo! All resources are included in the PowerPoint - enjoy :)
**BIG BUNDLE** KS3 ~ Year 7 - All Biology, Chemistry & Physics Lessons
SWiftScienceSWiftScience

**BIG BUNDLE** KS3 ~ Year 7 - All Biology, Chemistry & Physics Lessons

3 Resources
This bundle contains 57 whole lessons, along with all additional resources, which meet all learning outcomes within the complete Year 7 Activate Course, units include: Biology: B1.1 Cells B1.2 Structure & Function of Body Systems B1.3 Reproduction Chemistry C1.1 Particles & Their Behaviour C1.2 Elements, Atoms & Compounds C1.3 Chemical Reactions C1.4 Acids & Alkalis Physics P1.1 Forces P1.2 Sound P1.3 Light P1.4 Space The resources were designed with the Year 7 Activate course in mind, it contains over 24 weeks worth of lesson content!! You can find more lesson bundles aimed for the KS3 and KS4 science curriculum at: https://www.tes.com/teaching-resources/shop/SWiftScience All lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks!
NEW KS3 ~ Year 8 ~ Motion & Pressure
SWiftScienceSWiftScience

NEW KS3 ~ Year 8 ~ Motion & Pressure

6 Resources
This bundle of resources contains 6 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 8 P2 1.1 'Motion & Pressure’ Unit. Lessons include: Speed Motion Graphs Pressure on Solids Pressure in Liquids Gas Pressure Levers The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Physics - Changes of State
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Changes of State

(1)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Molecules & Matter’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a recap on the definition for different changes of state - melting, freezing & boiling. Students are then introduced to the idea of ‘impurities’ which can affect the melting/boiling point of a pure substance, i.e. addition of salt to a pan of water you want to boil. Next, students are shown a graph which shows how the temperature of a substance changes over time, as it is heated. Students will need to sketch the graph into their books, then using the labels provided they can annotate the graph to describe what is happening to the particles of the substance as it changes from a solid -> liquid -> gas. This task, once complete, can then be self-assessed using the mark scheme provided. Next, students are shown a diagram and given some information which helps to explain the energy changes which are occurring as a substance goes through changes of state from a solid to a gas. Students are then given the opportunity of conducting their own investigation to find the melting point of a solid substance, the results they collect from this investigation can be plotted onto a graph. The last two tasks are aimed at assessing students knowledge of what they have learned so far this lesson, firstly pupils will be given some date - from which they will need to plot a graph and answer some questions. This work can then be self-assessed using the mark scheme provided. Lastly, students are asked to complete an ‘Exam-style’ question which students can then either peer or self assess using the mark scheme provided. The plenary activity is a ‘Pick a Plenary’ - students will either summarise what they have learned during the lesson in 3 sentences or they will need to write definitions for a list of key words. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Gas Pressure & Volume
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Gas Pressure & Volume

(1)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Molecules & Matter’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a video on gas pressure and volume, students will need to answer a set of questions whilst watching the video. The mark scheme for this task is included in the PowerPoint presentation so students can self-assess this work once it is complete. Pupils are now introduced to ‘Boyle’s Law’, firstly students need to use white-boards to explain why a decrease in volume leads to an increase in pressure - students are shown a diagram of two pistons to demonstrate this. Once students have discussed this and written their ideas down on the white-board, the explanation can be revealed on the PowerPoint presentation. Students are now introduced to the calculation: P1V1 = P2V2. Student can take a note of the calculation and they will then be shown a worked example, which they can also take notes on. Students will then be given a set of problems to work through using the calculation, the mark scheme for this task is included in the PowerPoint presentation so students can self-assess their work once it is complete. Lastly, students will be given an exam-stlye question which they will need to complete in their books, ensuring that they show all their working. The plenary task requires students to write three quiz questions, to test their peers knowledge of what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 - Energy Transfer: Radiation
SWiftScienceSWiftScience

KS3 ~ Year 8 - Energy Transfer: Radiation

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy’. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with a task whereby students will watch a video on infrared radiation, they will need to try to come up with a definition for infrared radiation whilst watching. The answers that students come up with can then be marked and corrected using the answer provided. Students will then be shown a diagram of a Leslie’s cube, and are told that different surfaces emit different amounts of infrared radiation. Students will then be asked to make a prediction about the surface they think (out of a choice of surfaces) will emit the most radiation. Students will then complete an investigation into the amount of infrared radiation given off by different coloured tins - black or silver. Once complete, students can use the data they have collected to draw a graph of their results and complete the analysis questions. Students will then be given examples of how infrared radiation can be absorbed and reflected and why these two processes are useful. Following on from this, students will complete a ‘fill-in-the-blank’ task to summarise what they have learned this lesson, this task can be self-assessed using the mark scheme provided. The plenary task is a ‘pick a plenary’ task, students are asked to either summarise what they have learned in three sentences or write a definition for a list of key words provided. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics  - Series & Parallel Circuits
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Series & Parallel Circuits

(0)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with an introduction into the differences between series and parallel circuits, students can take notes and draw a diagram of each type of circuit in their books. Students will then watch a video on series and parallel circuits, they will need to answer a set of questions in their books which focuses on how current and potential difference across components changes in a series vs. parallel circuit. Once this task is complete, students can then self-assess their work using the mark scheme provided. Next, pupils have to identify whether a circuit is a series circuit or a parallel circuit from a set of diagrams. Then, students are given a worksheet of parallel and series circuits, given the current of the ammeter shown in the diagram they will need to work out the current of the ammeters placed elsewhere in the circuit. Students can then self or peer assess their work using the mark scheme provided. The next part of the lesson focuses on the resistance of components found in series and parallel circuits. Firstly, students will be given the ‘Resistance Rule’ for components in a series circuit, as well as the calculation to work out total resistance in a series circuit. Using this, students can then answer some questions which can be self-assessed using the mark scheme provided. Next, pupils are introduced to the ‘Resistance Rule’ for components placed in a parallel circuit. Once they have learned the rules, pupils can answer a set of questions which can then be either peer-assessed or self-assessed using the mark scheme provided. The plenary task is a ‘Pick a plenary’ task - students can either summarise what they have learned this lesson in three sentences or they can write a definition for a set of key words from the ‘Electricity’ topic. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Physics (2016) - Conservation of Energy
SWiftScienceSWiftScience

NEW AQA GCSE Physics (2016) - Conservation of Energy

(1)
This is a lesson which meets specification points for the new AQA 'Energy' module (2016). The lesson begins by considering whether a pendulum placed in a vacuum will carry on swinging, pupils can discuss their thoughts and there is a video which shows an experiment taking place with a pendulum placed in different mediums. Pupils can then draw a diagram to show the energy transfers taking place as a pendulum swings. Pupils are the introduced to the principal of the conservation of energy, they can write this definition down in their books. Pupils are then given a blank cartoon strip, pupils will need to complete the captions to describe the energy transfers taking place during a bungee jump and they can draw a diagram to represent what is happening for each caption. **This task could be difficult for lower ability students, you can provide the words that go in the blanks on the board for pupils who may struggle with his task.** The next slide has progress check questions for pupils to complete in their books, pupils can then peer-assess their work. **Slides 6-7, which contain additional tasks on the conservation of energy - a fill-in-the blank task & a word search - could be used as an alternative to the more difficult progress check questions for classes of lower ability, or could be used as an extra activity for higher ability classes** The plenary is a 3-2-1 task, pupils state 3 facts, 2 key words and create 1 question to test peers on the topic of the lesson. All resources for this lesson are found at the end of the PowerPoint.
NEW AQA GCSE Physics (2016) - Energy & Power
SWiftScienceSWiftScience

NEW AQA GCSE Physics (2016) - Energy & Power

(2)
This is a resource designed to meet specification points for the NEW AQA GCSE Physics module on ‘Energy’. Other lessons of this series can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience It begins with a discussion on what power is a measurements of, there are hints that can be put on the board for lower ability students. You can then provide students with a definition of power which they can write down in their books. Pupils then consider the units of power, they can copy and complete sentences on the board which compare watts to joules/second and the difference between watts and kilowatts, joules and kilo joules. Next is the completion of a formula triangle in their books, higher ability students can figure out how to write this on their own but for lower ability students you may want to guide them through it. The concept of power is then put into context using Mo Farah/Usain Bolt as examples (videos provided). The next task is a table that students will need to copy off the board, it outlines different appliances and pupils will have to perform calculations to fill in the blanks. Pupils can self-assess their work using red pens, answers are provided on the PowerPoint slide. The final activity is a worksheet pupils can complete on power, again the answers to this worksheet is provided within the PowerPoint slide for pupils to self-assess the work. Plenary activity requires pupils to state three key facts from the lesson, 2 key words and pose a question to their peers on the topic of power. All resources are included in the PowerPoint slide. Thanks & enjoy :)
KS3 ~ Year 8 ~ Speed
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Speed

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy’. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with students identifying the speeds of different animals, from a list provided. Students are then asked to think about the measurements needed to calculate speed, they will be then be shown a worked example of how to calculate speed; students can take notes on this in their books. Students will now be shown how to use a formula triangle to calculate either speed, distance or time and will be given the definition for ‘mean/average speed’ - they can also make a note of this in their books. Students will now complete a ‘quick check’ task, a set of questions based upon what the students have learned to far this lesson. This task can then be self-assessed using the mark scheme provided. Next, students will complete an investigation to calculate the walking speed of two students in their group. One student will walk a slow speed and one students will walk a fast speed, over a set distance, whilst the third member of the group records the time. Results can be recorded in table in their books, students can then complete a distance-time graph of their results. Lastly, students are introduced to the idea of relative motion through a ‘Think>Pair>Share’ task. The plenary task requires students to complete a 3-3-1 reduction of what they have learned this lesson, this includes 3 facts, 3 key words reduced to 1 key words. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ The Moon
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ The Moon

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P4 ’Space’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to the phases of the Moon, students are shown a diagram which show the changing appearance of the Moon as seen by Earth as the Moon orbits the Earth. The next task is a memory test, students will be shown images of the different phases of the Moon along with the names of these specific phases. Students will need to memorise the as many names as possible, before the names are taken away. Students will now have a few minutes to fill in their worksheet with the correct names, this task can then be self-assessed using the mark scheme provided. Next, students will complete a worksheet which requires them to shade in circles to show the phases of the Moon at particular positions. There is an extra challenge task to add labels to show the names for each phase. The mark scheme for this task is included in the PowerPoint so students can mark and correct their work. Next, students will watch a video on eclipses. Whilst watching the video they will answer a set of questions, once complete students can self-assess their work using the mark scheme provided. Laslty, students will complete a ‘copy-and-complete’ task to summarise what they have learned this lesson. This work can also be marked using the answers provided on the PowerPoint. The plenary task is a ‘pick a plenary’ - either unscramble a set of anagrams to spell five key words taken from the lesson today or use a set of key words (provided) to summarise what students have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Light
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Light

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P3 ’Light’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins by students being shown a video of a laser show, students will need to note down their observations about how light travels. Hopefully students should identify that light travels in straight lines - a diagram can be shown to students to identify this. Students are also shown a diagram which demonstrates how shadows are formed. Next, students will be given the definition of a luminous and non-luminous object. Students will need to come up with their own examples of luminous and non-luminous objects and write their ideas down into their books, under two headings. This task can then be self-assessed using the mark scheme provided, as well as other suitable suggestions. Students will now be shown some pictures of objects which are either opaque, transparent or translucent, students should now ‘Think > Pair > Share’ their ideas about how to group these images. Hopefully, students should identify the three categories, this will be revealed as part of a class discussion. Students will now be given some time to come up with their own definitions for the terms: opaque, transparent and translucent and should come up with their own examples. This task can then be self-assessed using the mark scheme provided. The next part of the lesson focuses on the speed of light, students will be given the speed of light and will be introduced to terms such as light-second, light-minute and light-year. Students will then be asked a question ‘What travels faster - light or sound? Give examples as evidence’. Students can discuss in pairs, writing their ideas down in their books. This can then be self-assessed using the mark scheme provided. The last task requires students to complete a ‘Progress Check’ - students will fill in the blanks to complete a paragraph of information summarising what they have learned today. This work can be marked and corrected once complete. Lastly is a true or false activity which students can either complete in their books or using mini whiteboards. The plenary task requires students to complete an ‘Exit Card’ to summarise three things they have learned, five key words and one question to their peers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Colour
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Colour

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P3 ’Light’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. Students are firstly introduced to the idea of ‘white light’ being split up into the colours of the rainbow. They are then shown a diagram of a ray of white light hitting a prism, which then leads to the refraction of this light - showing the colours of the rainbow from red to violet. Students can sketch a diagram of this into their books, indicating the most refracted and least refracted colours. Students are then shown a diagram which indicated how primary colours can be mixed together in various combinations to make secondary colours. The next part of the lesson, students will focus on how we observe different coloured objects. White light will bounce off an object, the colour the object appears depends on the colour of light that it reflects. Various diagrams are shown to students to demonstrate this point, they could sketch a copy of one of the diagrams or draw their own version in their books. They are then given a worksheet to assess their knowledge of what they have learned so far this lesson, extension questions are included for higher ability students. This work can be self-assessed using the mark scheme provided once it is complete. Students are now shown what happens to the appearance of objects when they are seen in coloured light rather than white light - coloured objects will only reflect the colour it is and will absorb any other colours - which means it appears to be black. Lastly, students are shown how filters are used to subtract light. Students will then complete a progress check to assess their knowledge of what they have learned this lesson, the mark scheme for this task is included on the PowerPoint. Students can then self-assess their answers using the mark scheme provided. The plenary requires students to write down 3 facts from the lesson, 3 key words and 1 question to test their peers knowledge of what they have learned. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Physics (2016) - Energy Dissipation & Efficiency
SWiftScienceSWiftScience

NEW AQA GCSE Physics (2016) - Energy Dissipation & Efficiency

(6)
This is a lesson aimed at the new GCSE Physics specification, it meets specification points for the 'Energy' module. For more lessons within this series please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by students considering how energy is transferred to useful or wasted energy stores and the concept of energy dissipation is introduced. The first activity involves students filling in a worksheet to identify the useful and wasted energy transfers in different systems, this is then self-assessed using the answers on the PowerPoint. Pupils are then given the opportunity to describe the energy transfers of a pendulum, particularly thinking about why a pendulum eventually comes to a stop. Pupils can self-assess their work using the mark scheme on the PowerPoint. Pupils are then introduced to energy 'efficiency' and how they can use the wasted and useful energy values of a system to calculate the efficiency of this device. Pupils are firstly given some easier calculations to try which can be modelled on the board, answers are provided. Pupils can then complete the worksheet of calculations, which they can self-assess using the answers on the Power Point slide. For the last activity pupils are required to copy and complete a table, filling in missing values of either the efficiency, the wasted energy or useful energy values of different devices. Pupils can again self-assess using the answers provided. The plenary activity is a past-paper exit card, I get pupils to hand the completed worksheet to me as they leave and I will mark it and hand it back to them for the next lesson with a grade and improvements. Thanks for purchasing, please let me know if you have any feedback :). Worksheets are found at the end of the PowerPoint slide and all answers are provided so pupils can peer or self-assess their work throughout the lesson.
KS3 ~ Year 7 ~ Light Homework
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Light Homework

(0)
This homework activity is designed for the KS3 Science Course, specifically Year 7 P1.3 Module on ‘Light’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)