Hero image

SWiftScience's Shop

Average Rating4.26
(based on 751 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

785k+Views

456k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE Trilogy (2016) - The human nervous system
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) - The human nervous system

(4)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by looking an organism - a cat- and asking pupils to think about the types of stimulus the cat might respond to in it’s environment, plus which organs it needs to sense these stimuli. Pupils will brainstorm their ideas and then self-assess their work once the answers are revealed, additionally they will answer an exam question on this topic. Next, pupils focus on the effectors and their role in the nervous system. Pupils will be provided with a description of the role of muscles and glands as effectors and will then need to complete an exam question to assess their knowledge, mark scheme provided for either peer or self-assessment. The next part of the lesson will focus on neurons, firstly a diagram of a neuron cell is shown and pupils need to think about how this cell is similar and different to a normal animal cell. Pupils may discuss this in pairs and try and come up with an answer before the mark scheme is revealed. Sensory and motor neurons are now introduced via an animation, pupils can look at the pathway the electrical impulse travels as it moved around the nervous system. Pupils will use this to then copy and complete a summary to describe this process, when completed this can be self-assessed. The final activity is for pupils to copy and complete a table to sum up the main functions of each part the human nervous system either by using a card sort or by putting the statements on the board. This can then be peer or self-assessed when complete The plenary activity is for pupils to summarise the 5 main key words they have learnt that lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ The Menstrual Cycle
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ The Menstrual Cycle

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 B1.3 Module on ‘Reproduction’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with an introduction to the menstrual cycle and the definition of a period. This leads into a video on the menstrual cycle, students will be given a worksheet of questions which they will need to answer whilst watching the video. This work can be self-assessed using the answers provided on the PowerPoint. Next, students need to understand what is happening on different days of the menstrual cycle. They will watch another video, using this they need to outline the events which occur on Day 1, Day 14, Days 7-28 of the menstrual cycle. Once complete, students can mark and correct their work using the mark scheme provided. The next part of the lesson focuses on contraception, firstly students will be given a card of information about contraception - condoms and the contraceptive pill. Students will need to read the information and answer a set of questions, this work can be assessed using the mark scheme provided once complete. The last task is an assessment task, to check students understanding of key terms learned over the last few lessons on reproduction. Students will need to match the correct term to the correct definition, this work can assessed using the answers provided. The plenary task requires students to write a Whatsapp message to their friend, explaining what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AS-Level Biology – Factors Affecting Enzyme Action
SWiftScienceSWiftScience

NEW (2016) AS-Level Biology – Factors Affecting Enzyme Action

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins with a starter to encourage discussion about the differences between the induced fit and lock and key models of enzyme action. Students are also asked to explain how temperature and pH balance affect enzyme action. The following slide briefly reviews enzyme-controlled reactions then asks students to use their mini whiteboards to write down four factors that might affect successful collision. Students can self-assess with the answers on the slide. Students are then taught to measure enzyme-catalysed reactions; in the notes I encourage you to ask students for examples and what the measurable changes are. Students can then use the slide to work through the ‘fill in the blank style’ paragraph using a graph as a guide to understand enzyme-catalysed reaction. On the board where everyone can see you should write - substrate - product (H202 -> h2 + 02). The following slide includes answers so students may self-assess or check their answers with a partner. The slides then work through a few more graphs to explain the effects of temperature and pH on enzyme action. The slides are lecture style, but you can see in my mores a few suggestions for discussion questions and further lecture material. Following these slides students are encouraged to graph on their own or perhaps as a large group. Students are then given the opportunity to answer two graph style questions in their books and then self-assess. Next the class will watch a video about measuring the rate of reaction at fixed points of time. After the video, students should answer four questions in their books and discuss the answers as a class. The next few slides build upon these questions and students are asked to practise calculating reaction rates on their own before self-assessing. The plenary requires students to solve seven anagrams in their books, then write an original sentence with each word. Each task or graph from the full lesson can be found on slides 22-27. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Prokaryotic Cells & Viruses
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Prokaryotic Cells & Viruses

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on prokaryotic cells and viruses begins with a starter discussion regarding the tissue of the stomach, and the difference between prokaryotic and eukaryotic cells. Students should then work to fill in a table to recap the organelles of eukaryotic cells and their functions, in their notes. The following slides introduce students to the features and content of prokaryotic cells, with a little memory test to help them label cell contents. Students can then self-assess against the slide before they move on to the next task where they will match cell structures to their role in the cell. The next task is a ‘think>pair>share’ to compare and contrast prokaryotic and eukaryotic cells. Student partners can then work together to compare and contrast on a worksheet table and self-access. Moving on to viruses! Students are asked to think and discuss the structure and function of viruses. They will also be asked to determine their confidence level for each of the outcome of the lesson by highlighting, in order to check their understanding. In order to learn about cell division in prokaryotic cells students are then asked to use an animation to help them draw a simple diagram of binary fission in their books. They are then asked to watch a short video explaining the rate of division and then calculate the rate of division for each hour for eight hours. Another video is included to help students complete a ‘fill in the blank’ passage about the replication of viruses, they can self-assess their passage on the following slide. A past-paper question is also included for students to check their understanding of the lesson, they can then self or partner-assess their work. As a plenary task, students should complete three sentences in their books describing what they have learned, what they already knew, and what they might like to learn more about. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry - 'Atomic Structure & the Periodic Table' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Atomic Structure & the Periodic Table' lessons

13 Resources
This bundle of resources contains 10 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Atomic Structure and the Periodic Table’ unit for the NEW AQA Chemistry Specification. Lessons include: 1. Atoms, elements, compounds & mixtures 2. Chemical reactions & equations 3. Separating mixtures 4. The structure of the atom 5. The development of the atomic model 6. Electronic configuration 7. Mendeleev and the periodic table 8. Group 1: The alkali metals 9. Group 7: The halogens 10. Group 0: The noble gases The lessons contain a mix of differentiated activities, mid-lesson progress checks, exam questions and extra challenge tasks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
KS3 ~ Year 7 ~ Cells Homework
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Cells Homework

(0)
This homework activity is designed for the KS3 Science Course, specifically Year 7 B1.1 Module on ‘Cells’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Evolution & Extinction
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Evolution & Extinction

(4)
This task is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation & evolution’ SoW. For more resources designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This activity contains a set of differentiated questions worth 20 marks in total, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension or revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work against their target grades, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Biology - Exchanging Materials
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Exchanging Materials

(2)
This resource is designed to meet specification points in the new AQA Trilogy Biology ‘Cells’ SoW. For more resources designed to meet specification points for the new AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with pupils shown a picture of an amoeba and one of a polar bear, they will need to discuss the difference between the organisms in terms of how they take in oxygen from their environment. Once you have shared a few ideas from the pupils with the class you can show the pupils the difference between the two organisms - amoeba can rely on simple diffusion whereas larger multicellular organisms need specialised exchange surfaces. Pupils are then shown three examples of exchange surfaces - alveoli, small intestine and leaves of plants - they will need to think about how these structures might be adapted to exchange materials efficiently. You could have a short class discussion to develop these ideas. Once you have again discussed these factors with the class you can reveal the next slide which outlines the 4 main features of an efficient gas exchange surface. Pupils will then be given a worksheet and they will need to move around the room reading posters of information about villi and alveoli to complete the worksheet. This should take approximately 20 minutes, once finished pupils can peer-assess their work using the answers provided with the PowerPoint presentation. The plenary is an Exit Card pupils will complete and pass to you on the way out of the door, this requires pupils to write down 3 key words, one fact and a question to test their peers knowledge of what they have learnt about in the lesson today.
NEW GCSE Chemistry (2016) - Alcohols, carboyxlic acids & esters
SWiftScienceSWiftScience

NEW GCSE Chemistry (2016) - Alcohols, carboyxlic acids & esters

(0)
This lesson is designed for the NEW AQA Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
NEW AQA GCSE Trilogy (2016) Chemistry - Covalent bonding
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Covalent bonding

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with a video on covalent bonding, pupils will need to watch the video and answer a set of questions. When pupils are finished their work can be marked using the answers provided. The next activity is a crossword on covalent bonding, this too can be self-assessed using the answers provided on the PowerPoint. The next part of the lesson focuses on simple covalent molecules, firstly pupils are introduced to the idea that covalent structures are either simple molecules or giant structures. Pupils will be shown dot and cross diagram of a hydrogen molecule and asked to have a go at drawing a dot and cross diagram of a chlorine molecule. Once this work has been checked, pupils are then shown how to draw a dot and cross diagram of a double bond and triple bond (oxygen molecule and nitrogen molecule), it may be beneficial for pupils to draw these diagrams in their books for future reference. The lesson now focuses on some of the properties of simple covalent molecules, then pupils will be asked to draw a dot and cross diagram to show the structure of water, methane and ammonia. Once this task is complete, students can assess their work using the answers provided on the PowerPoint presentation. The final task is a true or false task, pupils are given a set of statements about covalent bonding. They will need to identify if true or false, this can be done as a whole class using white-boards or in their books. The plenary task is for pupils to unscramble anagrams of words relating to the bonding topic. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW KS3 ~ Year 8 ~ Electricity & Magnetism
SWiftScienceSWiftScience

NEW KS3 ~ Year 8 ~ Electricity & Magnetism

7 Resources
This bundle of resources contains 7 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 8 'Electricity & Magnetism’ Unit. Lessons include: Charging Up Current & Charge Resistance Potential difference Series & Parallel Circuits Magnets & Magnetic Fields Electromagnets The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
KS3 ~ Year 8 ~ Energy & Power
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Energy & Power

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy’. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with a discussion on what power is a measurements of, there are hints that can be put on the board for lower ability students. You can then provide students with a definition of power which they can write down in their books. Pupils then consider the units of power, they can copy and complete sentences on the board which compare watts to joules/second and the difference between watts and kilowatts, joules and kilo joules. Next is the completion of a formula triangle in their books, higher ability students can figure out how to write this on their own but for lower ability students you may want to guide them through it. The concept of power is then put into context using Mo Farah/Usain Bolt as examples (videos provided). The next task is a table that students will need to copy off the board, it outlines different appliances and pupils will have to perform calculations to fill in the blanks. Pupils can self-assess their work using red pens, answers are provided on the PowerPoint slide. Next, students will complete a ‘copy and complete’ task, students will need to fill in the blanks to complete a paragraph which summarises everything that they have learned throughout the course of this lesson. The answers to this task can be self-assessed using the mark scheme provided. The last part of the lesson focuses on electricity bill calculations, using the units kWh. Students will be shown a worked example of a calculation to demonstrate how much energy (in kWh and Joules) is used by a laptop over the course of one hour. Students will then compete a set of problems similar to this, they can self-assess their work using the mark scheme once this task is complete. The plenary task requires students to write a Whatsapp message to a friend to summarise what they have learned this lesson. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Electrical Power & Potential Difference
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Electrical Power & Potential Difference

(2)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to power and what the power rating of an electrical appliance tells us about that appliance. Students are then asked to recap on their knowledge of power by trying to link together power, energy transferred and time in an equation (also in the ‘Energy’ topic). Once pupils have had a go at writing the correct equation, the answer is revealed in the PowerPoint presentation and students can then use this formula triangle to answer a set of questions. Once this task is complete students can then self-assess their working using the mark scheme provided. Students are now introduced to the calculation which works out the power supplied to an electrical appliance when given the current and potential difference. Students can make a note of this calculation in their books, complete the worked examples in their books and assess their answers. Next, pupils will be shown how you are able to decide which sort of fuse (3A, 5A, 13A) will be suitable for an appliance. Students are shown a worked example first, then they will be required to complete a ‘Quick Check’ task whereby students will answer questions based upon what they have learned so far this lesson. The mark scheme for this task is included in the PowerPoint so students can self-assess their work once it is complete. The last part of the lesson focuses on the relationship between current and resistance heating, pupils are shown another calculation which they are able to use to work out the power supplied to a resistor. Students will then be given a set of problems to work through, again assessing their knowledge of all they have learned this lesson. Students can then self-assess or peer-assess their work using the answers provided. The plenary task requires pupils to spend a minute talking to the person next to them about what they have learned. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Mixtures
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Mixtures

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.3 unit on ‘Separation Techniques. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a recap of particle arrangements in an element, compound and a mixture. Students will be asked to ‘Think > Pair > Share’ their ideas, drawing a diagram of the particle arrangement in each as an extra challenge. After a short discussion, the answers will be revealed so students can check their work. The next task requires students to organise a set of statements into two columns - those statements describing a mixture or describing a compound. This task can then be self-assessed using the mark scheme provided once complete. Students are now asked to ‘Think > Pair > Share’ their ideas about what the term ‘pure’ means. After a short class discussion, the definitions (along with examples) for pure and impure substances are provided. Students will now complete an investigation to test three different water samples for purity. Using a pH test and an evaporation test students need to decide which of the samples are pure and which are impure. Students will have the chance to report their findings to the rest of the classroom, explaining their thoughts on which samples were pure/impure. Lastly, students will watch a video on chemical tests used to check the purity of a substance. Students will need to answer a set of questions whilst watching this video, the answers to which are included in the PowerPoint so students can self-assess their work once it is complete. The plenary task requires students to spend a minute talking to the person next to them about what they have learned this lesson. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated
KS3 ~ Year 8 ~ Solutions
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Solutions

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.3 unit on ‘Separation Techniques. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a description of a solution, students can make a note of this in their books and then ‘Think > Pair > Share’ their ideas about examples of solutions they know. After a short discussion in pairs and as a class, some example answers are revealed to students. Next, students are introduced to the key terms - solute, solvent and solution - given the example of salt being dissolved in water to produce a saltwater solution. The process of dissolving is explained using particle theory, using a particle diagram to help demonstrate the concept. Students will then be asked to come up with a role-play to demonstrate the process of dissolving, some groups can show this to the rest of the class. Students will now complete a fill-in-the-blank worksheet to assess their knowledge of what they have learned so far this lesson, this can be marked and corrected using the mark scheme provided. Lastly, students will be shown how to work out the total mass/volume of a solution given the mass/volume of the solute and solvent. Students will then work through a set of problems, the answers to which are included in the PowerPoint so students can self-assess their work using the mark scheme provided. The plenary task requires students to write a twitter message to summarise what they have learned this lesson, including #keywords. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated
NEW AQA GCSE Trilogy (2016) Chemistry - Titration practical & calculations HT
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Titration practical & calculations HT

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical calculations’ SoW and specifically designed for higher tier GCSE chemistry students. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with students learning how to calculate the concentration of a solution in mols/dm3 when you know the mass of the solute in the solution. Students learn the steps necessary to complete this calculation, they can then complete a set of problems. This work can be self-assessed using the answers provided in the PowerPoint presentation. Students are then asked to discuss how they might work out the mass of a solute in a solution when they know the volume and concentration of a solution. After a short class discussion, the PowerPoint reveals four steps students should work their way through when approaching a problem such as this one. Students are then given two further problems to have a go at, they should show their working at each step of the calculation. Answers to the questions, as well as working out, is included in the PowerPoint presentation. Students are then given a worksheet, including a worked example of how to use a titration to calculate the concentration of a unknown substance. Using the worked example as a guide, students should attempt to answer the questions on the worksheet. For lower ability students it will be worth going through the worked example on the board first, those very able students should be able to use the worked example as a guide when answering the other questions Once this task has been completed students should self-assess their work using the mark scheme provided. The last task is a titration practical, their is a worksheet included in the PowerPoint for students to use as guide when completing the practical - including an aim, equipment list, method and results table. Once they have completed the investigation they should be able to use the balanced symbol equation to calculate the concentration of sulfuric acid used in this titration. The plenary task is for pupils to write down 3 key words, 2 facts and a question to test their peers on what they have learned today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Chemistry - Forming ions
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Forming ions

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a recap on the differences between elements, compound and mixture, pupils complete a task and self-assess their work. Pupils are then introduced to the idea of covalent bonding and ionic bonding as two forms of bonding and are reminded how to draw the electronic configuration of an atom, including a reminder of the rules around filling energy shells. Pupils will now watch a video on the formation of ions, whilst watching the video pupils will answer a set of questions and when finished pupils can assess their work using the answers provided in the PowerPoint. Next, pupils will be shown how to draw diagrams to demonstrate the formation of positive and negative ions, they can draw examples in their books for future reference. To assess their knowledge of this topic pupils will complete a set of questions including drawing a diagram to demonstrate the formation of an ionic bond between lithium and fluorine, this can then be self or peer assessed using the answers provided. The last task is for pupils to use their periodic table to draw the electronic structure of the ions formed from a potassium, oxygen, magnesium and calcium atom. This work will then be assessed using the answers provided. The plenary involves pupils picking a task, wither write a twitter message about what they have learnt or write a set of quiz questions to test peers on what they have learnt in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Biology - Alcohol
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Biology - Alcohol

(0)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a video displaying the short-term and long-term effects of alcohol on the body. Students can watch the video and whilst watching create a mind map of the different effects, this work can then be self-assessed using the mark scheme provided. Next, the effect of alcohol on the liver and brain are specifically highlighted using the PowerPoint presentation, students will then need to compete a fill-in-the-blank task to highlight these specific risks. Again, the answers to this task are included in the PowerPoint presentation for students to self-assess and correct their work. Students are now shown some data and will need to answer a set of questions based on this data, the mark scheme for this task is included in the PowerPoint for students to mark and correct their work. The last part of the lesson focuses on the effect of alcohol on pregnant women and their unborn child. Students will watch a video, during which they will need to answer a set of questions. This work can then be self-assessed using the mark scheme provided. The plenary task requires students to write a twitter message about what they have learned this lesson, students should include #keywords from the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Speed
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Speed

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy’. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with students identifying the speeds of different animals, from a list provided. Students are then asked to think about the measurements needed to calculate speed, they will be then be shown a worked example of how to calculate speed; students can take notes on this in their books. Students will now be shown how to use a formula triangle to calculate either speed, distance or time and will be given the definition for ‘mean/average speed’ - they can also make a note of this in their books. Students will now complete a ‘quick check’ task, a set of questions based upon what the students have learned to far this lesson. This task can then be self-assessed using the mark scheme provided. Next, students will complete an investigation to calculate the walking speed of two students in their group. One student will walk a slow speed and one students will walk a fast speed, over a set distance, whilst the third member of the group records the time. Results can be recorded in table in their books, students can then complete a distance-time graph of their results. Lastly, students are introduced to the idea of relative motion through a ‘Think>Pair>Share’ task. The plenary task requires students to complete a 3-3-1 reduction of what they have learned this lesson, this includes 3 facts, 3 key words reduced to 1 key words. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Gas Pressure
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Gas Pressure

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Motion & Pressure’. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a demonstration - the collapsing can. Students should hopefully be able to identify that the can that collapsed had a lower pressure inside the can than outside the can, causing the can to collapse inwards. This leads into a description of gas pressure, including a diagram to help demonstrate the concept. Students will now ‘Think > Pair > Share’ their ideas about what could cause an increase in pressure, after a short discussion the answers will be revealed to students - increasing the number of particles and increasing the temperature or reducing the size of the particles. Students will now complete a task based upon what they have learned so far this lesson, this can be self-assessed using the mark scheme provided. Students will now complete an investigation called ‘What makes a ball bouncy?’. Students will investigate whether a ball becomes more bouncy the more/less pumps of air it has in it. Students will copy the table of results into their books, draw a graph of their results and complete analysis questions. This task can be self-assessed once complete. Lastly, students are introduced to the idea of atmospheric pressure and shown a diagram which represents the density of air particles at the top of the mountain compared to the bottom. The plenary task requires students to complete one of the sentence starters in their books to summarise what they have learned this lesson. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated