Hero image

GJHeducation's Shop

Average Rating4.50
(based on 910 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1163k+Views

1970k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The properties and uses of SOUND
GJHeducationGJHeducation

The properties and uses of SOUND

(0)
This is a fully-resourced lesson that uses a variety of tasks and quick competitions to look at what happens to sound waves when they hit a boundary and how these properties are utilised for numerous functions and appliances. This lesson includes an engaging and informative lesson presentation (32 slides) and a worksheet which is differentiated two ways to enable students who are finding the topic difficult a chance to access the learning. The lesson begins by looking at how sound waves can be reflected and how this is commonly known as an echo. Students are challenged to use a provided equation to calculate a distance by using the time that the echo of a shout takes to be heard in the Grand Canyon. Moving forwards, students will see how this idea of reflection can be used with ultrasound in the imaging of the foetus. At this stage, as the cover image shows, students are challenged to complete a doctor’s letter to an expectant mother who is concerned about the ultrasound procedure. Assistance is given in the form of a differentiated worksheet for those who find it difficult. Moving forwards, students will learn that sound waves can be refracted at a boundary, just as light waves can. Working with the teacher, they will use key terms to build up an exemplar definition to explain how this refraction occurs. This lesson has been designed for GCSE aged students.
Reflection
GJHeducationGJHeducation

Reflection

(0)
This is a fully-resourced lesson that looks at the reflection of light waves and uses a series of practical based tasks to discover the rules of reflection as well as introducing the critical angle. In addition, students will encounter how total internal reflection can be used in medicine in endoscopy and will be challenged to carry out a task where they act as a doctor to explain to a patient how the procedure works. The lesson contains a variety of tasks, progress checks to check on understanding and a few quick competitions, which introduce key terms. For example, the cover image shows one of these competitions called REFLECT THE WORD where students have to work out the key term - the normal in this case. The understanding of key terminology such as the normal is important so that students can construct ray diagrams in this lesson and in associated topics such as refraction. This lesson has been designed for GCSE aged students but could be used with younger students who are looking to go into this topic in greater depth than perhaps would normally be encountered at their level
Everyday motion
GJHeducationGJHeducation

Everyday motion

(1)
This is a fully-resourced lesson that guides students through the range of calculations involved in calculating speeds in everyday situations. This lesson includes an informative lesson presentation (27 slides) and a question worksheet which has been differentiated two ways. The lesson begins by showing the students a speed camera and challenging them to recall the equation that would be used to calculate the speed as well as asking them to explain where the distance and the time values would come from. This lesson has a high mathematical element to it, to run in line with the questions that were seen in the latest exams this summer. Students will be expected to convert between units and rearrange formula. In this example, students are challenged to convert between m/s and mph in order to determine which of three drivers will receive a speeding ticket for exceeding the limit. This task has been differentiated so that students who find the conversions difficult are given some assistance so they can still access the learning. Moving forwards, students will see how a sensor on a tyre of a bicycle can also be used to calculate the speed by working out the circumference of the tyre to determine the distance. The final part of the lesson gets students to convert between m/s and mph and the other way to find out some typical speeds of everyday motion such as walking, running or a train moving. This lesson has been written for GCSE aged students but could be used with younger students of high ability who need an extra challenge in the calculating speed topic.
Topic P6: Global challenges (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P6: Global challenges (OCR Gateway A GCSE Combined Science)

6 Resources
This bundle of 6 lessons covers the majority of the content in Topic P6 (Global challenges) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include: Everyday motion Explain methods of measuring human reaction times and recall typical results Explain the factors which affect stopping distance The main energy sources available on Earth The differences between renewable and non-renewable energy sources The use of transformers to increase and decrease potential difference The National grid and mains electricity The differences in function of the wires in a three core cable All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P6.1: Physics on the move (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P6.1: Physics on the move (OCR Gateway A GCSE Combined Science)

3 Resources
This bundle of 3 lessons covers most of the content in sub-topic P6.1(Physics on the move) of the OCR Gateway A GCSE Combined Science specification. The topics or specification points covered within these lessons include: Everyday motion Reaction time and thinking distance Stopping distances All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
OCR Gateway A GCSE Physics Module P6 (Radioactivity) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Physics Module P6 (Radioactivity) REVISION

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Module P6 (Radioactivity) of the OCR Gateway A GCSE Physics specification. The sub-topics and specification points that are tested within the lesson include: The atomic nuclei Recognising and representing isotopes Unstable nuclei and the emission of radiation Writing balanced equations to represent radioactive decay Explain the concept of half-life and carry out calculations to determine the half-life or time taken for decay Recall the different penetrating powers of alpha, beta and gamma Be able to describe the processes of nuclear fission and fusion Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
Edexcel GCSE Combined Science Topic P14 REVISION (Particle model)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic P14 REVISION (Particle model)

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic P14 (Particle model) of the Edexcel GCSE Combined Science specification. The sub-topics and specification points that are tested within the lesson include: Explain the different states of matter in terms of movement and arrangement of particles Recall and use the equation to calculate density Explain the differences in density between the different states of matter Describe how mass is conserved during changes of state and understand how these physical changes differ from chemical changes Define the terms specific heat capacity and specific latent hear and explain the differences between them Use the equations to calculate change in thermal energy and thermal energy for a change in state Knows way to reduce unwanted energy transfer Describe the term absolute zero, in terms of the lack of movement of particles Convert between the kelvin and Celsius scales Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
AQA GCSE Combined Science REVISION
GJHeducationGJHeducation

AQA GCSE Combined Science REVISION

11 Resources
Each of the 11 revision lessons included in this bundle are detailed and engaging and provide the students with multiple opportunities to check their understanding of the following topics in the AQA Combined Science course: Random and systematic errors Independent, dependent and control variables Pathogens Viral, bacterial, fungal and protist diseases The movement of water molecules by osmosis Calculating acceleration from a velocity-time graph Using resultant force and F=ma Reactions of acids with metals Redox reactions and the loss and gain of electrons The properties of waves Refraction Control systems in homeostasis The regulation of blood glucose concentration Properties of ionising radiation Detecting radiation based on penetrating power Half-life Decay equations Classification system using kingdom, phylum, class, order, family, genus and species The binomial naming system The three-domain system Chromosomes The 3 stages of the cell cycle including mitosis The formation of gametes by meiosis Mole calculations Concentration of solutions Protons, electrons, and neutrons in atoms, ions and isotopes Bond energy calculations The rate of photosynthesis and limiting factors These resources can be used in the final weeks and months before the GCSE examinations or for revision before end of topic tests or mocks. If you want to view the quality of these resources, download the control of blood glucose, reactions of acids with metals, mitosis and meiosis and radiation resources as these have been shared for free.
Radioactivity and particles REVISION (Edexcel IGCSE Physics Topic 7)
GJHeducationGJHeducation

Radioactivity and particles REVISION (Edexcel IGCSE Physics Topic 7)

(3)
This is a detailed and engaging REVISION lesson which is fully-resourced and uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 7 (Radioactivity and particles) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first assessment in June 2019. The specification points that are covered in this revision lesson include: Use the following units: becquerel (Bq), centimetre (cm), hour (h), minute (min) and second (s) Describe the structure of an atom in terms of protons, neutrons and electrons and use symbols to represent isotopes Know the terms atomic (proton) number, mass (nucleon) number and isotope Know that alpha (α) particles, beta (β−) particles, and gamma (γ) rays are ionising radiations emitted from unstable nuclei in a random process Describe the nature of alpha (α) particles, beta (β−) particles, and gamma (γ) rays, and recall that they may be distinguished in terms of penetrating power and ability to ionise Describe the effects on the atomic and mass numbers of a nucleus of the emission of each types of radiation Understand how to balance nuclear equations in terms of mass and charge Know that the activity of a radioactive source decreases over a period of time and is measured in becquerels Know the definition of the term half-life and understand that it is different for different radioactive isotopes Use the concept of the half-life to carry out simple calculations on activity Know that nuclear reactions, including fission, fusion and radioactive decay, can be a source of energy Understand how a nucleus of U-235 can be split (the process of fission) by collision with a neutron, and that this process releases energy as kinetic energy of the fission products Know that the fission of U-235 produces two radioactive daughter nuclei and a small number of neutrons Describe how a chain reaction can be set up if the neutrons produced by one fission strike other U-235 nuclei Explain the difference between nuclear fusion and nuclear fission Describe nuclear fusion as the creation of larger nuclei resulting in a loss of mass from smaller nuclei, accompanied by a release of energy Know that fusion is the energy source for stars The students will thoroughly enjoy the range of activities, which include quiz competitions such as “It’s as easy as ABG” where they have to compete to be the 1st to form a word by using clues about the different types of radiation whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams
Moments (Turning forces)
GJHeducationGJHeducation

Moments (Turning forces)

(6)
A fully-resourced lesson which looks at the calculation of a turning force and uses this to apply the principle of moments. The lesson includes an engaging and informative lesson presentation (24 slides) and a series of worksheets, some of which contain questions which have been differentiated. The lesson begins by getting the students to read through the scene from Friends which involves the famous “PIVOT”. This word has been removed from the scene and so students have to work out what it is and how it could relate to a Physics lesson. The rest of the lesson focuses on the range of calculation questions that students can face, which get progressively more difficult. At each stage of the lesson, students are guided through examples and given hints on points to be conscious of so that any silly mistakes can be eradicated. The principle of moments question worksheet has been differentiated two ways so that those students who need extra assistance are still able to access the learning. A homework question is also included in the lesson. This lesson has been written for GCSE students but should higher ability KS3 students want to really test themselves, it could be used with them.
Diodes
GJHeducationGJHeducation

Diodes

(0)
A concise lesson presentation that focuses on the key details that students need to know about diodes for the GCSE examinations. The lesson begins by introducing the idea that diodes only allow current to flow in one direction. Moving forwards, time is taken to go through the potential difference vs current graph in 3 parts so that students can explain how the diode functions. Moving forwards, students will meet a LED and then in the style commonly associated with the 6 mark exam question, they are challenged to use data in a table to compare the effectiveness of a LED against other light bulbs.
OCR Gateway A GCSE Physics Topic 8 REVISION (Global challenges)
GJHeducationGJHeducation

OCR Gateway A GCSE Physics Topic 8 REVISION (Global challenges)

(0)
This is a detailed REVISION lesson that contains an engaging powerpoint (99 slides) and is fully-resourced with associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic 8 (Global challenges) of the OCR GCSE Physics A specification. The following specification points are covered in this lesson: Explain the factors which affect the distance required for road transport vehicles to come to rest in emergencies and the implications for safety Estimate how the distances required for road vehicles to stop in an emergency, varies over a range of typical speeds Estimate the forces involved in typical situations on a public road Describe the main energy sources available for use on Earth, compare the ways in which they are used and distinguish between renewable and non-renewable sources Explain patterns and trends in the use of energy resources Recall that step-up and step-down transformers are used to change the potential difference as power is transferred from power stations Link the potential differences and numbers of turns of a transformer to the power transfer involved; relate this to the advantages of power transmission at high voltages Recall that the domestic supply in the UK is a.c. at 50Hz and about 230 volts Recall the differences in function between the live, neutral and earth mains wires, and the potential differences between these wires Explain the red-shift of light as seen from galaxies which are receding (qualitative only). The change with distance of each galaxy’s speed is evidence of an expanding universe Explain how red shift and other evidence can be linked to the Big-Bang model Recall that our Sun was formed from dust and gas drawn together by gravity and explain how this caused fusion reactions, leading to equilibrium between gravitational collapse and expansion due to the energy released during fusion Recall the main features of our solar system, including the similarities and distinctions between the planets and their moons Due to the size of this revision lesson, it is likely to be used over the course of a number of lessons and can also be used throughout the duration of the GCSE course, as an end of topic revision lesson or as lessons in the lead up to mocks or the actual GCSE exams
MOMENTUM
GJHeducationGJHeducation

MOMENTUM

(3)
A concise lesson presentation (16 slides) and associated worksheet that looks at the motion topic of Momentum and guides students through how to answer these questions. The lesson begins by giving the students the units for momentum and challenging them to use this to work out the other factors involved in the equation. Moving forwards, a number of progress checks are used to see whether the students can apply their new found knowledge. All progress checks have displayed mark schemes. This lesson has been designed for GCSE students and ties in nicely with my other resources, "Conservation of momentum" and "Changes in momentum"
Edexcel GCSE Combined Science Topic P8 REVISION (Energy - forces doing work)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic P8 REVISION (Energy - forces doing work)

(2)
This REVISION lesson contains an engaging and detailed powerpoint (40 slides) and is fully-resourced with associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic P8 (Energy - forces doing work) of the Edexcel GCSE Combined Science specification. The following specification points are covered in this lesson: Identify the different ways that the energy of a system can be changed Describe how to measure the work done by a force and understand that energy transferred (joule, J) is equal to work done (joule, J) Recall and use the equation to calculate work done Describe and calculate the changes in energy involved when a system is changed by work done by forces Recall and use the equation to calculate the change in gravitational potential energy Recall and use the equation to calculate the amounts of energy associated with a moving object Explain, using examples, how in all system changes energy is dissipated so that it is stored in less useful ways Explain that mechanical processes become wasteful when they cause a rise in temperature so dissipating energy in heating the surroundings Recall and use the equation to calculate efficiency This lesson is suitable for use throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams
WJEC GCSE Physics Topic 2.3 REVISION (Work and energy)
GJHeducationGJHeducation

WJEC GCSE Physics Topic 2.3 REVISION (Work and energy)

(0)
This is a fully-resourced revision lesson which contains a wide range of activities to allow students to assess their understanding of the content in topic 2.3 (Work and energy) of the WJEC GCSE Physics specification. The engaging and detailed PowerPoint and accompanying differentiated resources use exam-style questions, tasks, discussion points and quick quiz competitions to check on the following specification points: The equation W= Fd The understanding that work is a measure of energy transfer The fact that an object can possess energy due to its motion, position and deformation Application of the equations for kinetic energy and changes in gravitational potential energy Application of the conservation of energy Understand the relationship between force and extension for a spring Application of the equation to calculate spring constant Using the force-extension graph to calculate the work done in stretching Improving the energy efficiency of vehicles
PHYSICS EQUATIONS REVISION (Edexcel IGCSE Physics)
GJHeducationGJHeducation

PHYSICS EQUATIONS REVISION (Edexcel IGCSE Physics)

(0)
This detailed and engaging lesson has been written to challenge the students on their recall and application of the 21 equations which they have to know for the Pearson Edexcel IGCSE Physics exams. The lesson is designed to not only check that they know these equations but also on their ability to rearrange formulae when required and to convert between units. The main task of the lesson consists of 12 exam-style questions which challenge 14 of these recall equations and then an engaging quiz competition and class discussions are used to identify the other 7. Students are guided throughout the lesson in the use of the mathematical skills and are shown examples to aid their progress. This lesson has been designed to tie in with the other 8 uploaded revision lessons which cover the content of the 8 topics on the specification.
OCR GCSE Physics A Topic 3 REVISION (Electricity)
GJHeducationGJHeducation

OCR GCSE Physics A Topic 3 REVISION (Electricity)

(3)
This is a fully-resourced REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 3 (Electricity) of the OCR GCSE Physics A 9-1 specification. The specification points that are covered in this revision lesson include: Describe the production of static electricity, and sparking, by rubbing surfaces, and evidence that charged objects exert forces of attraction or repulsion on one another when not in contact Explain how transfer of electrons between objects can explain the phenomena of static electricity Recall that current has the same value at any point in a single closed loop Recall and apply: potential difference (V) = current (A) x resistance (Ω) Recall and apply: power (W) = potential difference (V) x current (A) = (current (A))2 x resistance (Ω) Describe the differences between series and parallel circuits Represent d.c. circuits with the conventions of positive and negative terminals, and the symbols that represent common circuit elements Recall that current (I) depends on both resistance ® and potential difference (V) and the units in which these are measured Recall and apply the relationship between I, R and V, and that for some resistors the value of R remains constant but that in others it can change as the current changes Explain that for some resistors the value of R remains constant but that in others it can change as the current changes Use graphs and relate the curves produced to the function and properties of circuit elements Calculate the currents, potential differences and resistances in d.c. series and parallel circuits Apply the equations relating potential difference, current, quantity of charge, resistance, power, energy, and time, and solve problems for circuits which include resistors in series, using the concept of equivalent resistance Students will be thoroughly engaged throughout the lesson due to the range of activities which include quiz competitions such as “GRAFT over these GRAPHS” where they compete to be the 1st to recognise a particular component from its resistance graph. The main two question tasks are differentiated so that students who need extra assistance can still access the work and challenge their knowledge. This lesson is suitable to be used as a revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
Atomic Physics REVISION (Topic 5 CIE IGCSE Physics)
GJHeducationGJHeducation

Atomic Physics REVISION (Topic 5 CIE IGCSE Physics)

(1)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic 5 (Atomic Physics) of the CIE IGCSE Physics specification The sub-topics and specification points (from both the core and supplement sections), that are tested within this revision lesson include: Atomic model Nucleus Detection of radioactivity Characteristics of the three kinds of emission Radioactive decay Half-life Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual exams
PAPER 6 REVISION FT (Edexcel Combined Science FOUNDATION TIER)
GJHeducationGJHeducation

PAPER 6 REVISION FT (Edexcel Combined Science FOUNDATION TIER)

(1)
This is a fully-resourced lesson which uses exam-style questions, engaging quiz competitions, quick tasks and discussion points to challenge students on their understanding of the content of topics P1 & P8 - P15, that will assessed on PAPER 6. It has been specifically designed for students on the Edexcel GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to cover as many specification points as possible but the following sub-topics have been given particular attention: The 13 recall and apply equations tested in PAPER 6 Electrical components and symbols Setting up an ammeter and voltmeter in a circuit Current and potential difference in a series circuit The change in resistance in a LDR, diode, thermistor and filament bulb Mains domestic supply in the UK Plugs and fuses as safety devices Contact and non-contact forces Attraction and repulsion in magnets Magnetic fields Changes of state as physical changes The extension of a spring In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. A revision quiz, consisting of 10 rounds, runs over the course of the lesson and a score sheet is included with the resources to maintain motivation and engagement. Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 6 exam.
Physics EQUATIONS REVISION (CIE IGCSE Physics)
GJHeducationGJHeducation

Physics EQUATIONS REVISION (CIE IGCSE Physics)

(1)
This detailed and engaging lesson has been written to challenge the students on their recall and application of the 30 equations which they have to know for the CIE IGCSE Physics exams. The lesson is designed to not only check that they know these equations but also on their ability to rearrange formulae when required and to convert between units. The main task of the lesson consists of 15 exam-style questions which challenge 17 of these recall equations and then an engaging quiz competition and class discussions are used to identify the other 13. Students are guided throughout the lesson in the use of the mathematical skills and are shown examples to aid their progress. The detail of this lesson means that it can be used at numerous times throughout the duration of the IGCSE course to check on their progress with the equations. This lesson has been designed to tie in with the other 5 uploaded revision lessons which cover the content of the 5 topics on the specification