A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This is a highly engaging, detailed and fully-resourced revision lesson which covers topics 4 & 5 of the Pearson Edexcel GCSE Physics specification. Due to the close links between the topics of waves and light and the electromagnetic spectrum, it was decided to design a single resource that challenged the students on their knowledge and understanding of the Physics detailed in these two topics.
The PowerPoint and acccompanying resource have been written to include a wide range of activities which include exam-style questions (with clearly explained answers), differentiated tasks and quick quiz competitions. These activities challenge the following specification points:
Define and use the terms frequency, wavelength, amplitude and period
Recall and use both of the equations to calculate wave speed
Describe how to measure the velocity of sound in air and ripples on water surfaces
Describe the effects of reflection and refraction
Explain how waves will be refracted at a boundary in terms of a change in direction and speed
Recall that sound waves can be ultrasound and infrasound
Explain uses of ultrasound
Explain, with the aid of diagrams, refraction, the critical angle and total internal reflection
Explain the difference between specular and diffuse reflection
Recall that the EM waves are transverse and travel at the speed of light in a vacuum
Describe the EM spectrum as continuous from radio waves to gamma rays
Describe the uses and harmful effects of the EM waves
To fall in line with the heavy mathematical content of the specification, there is a large emphasis on a range of mathematical skills in this lesson which includes rearranging formula, converting between units and using standard form.
Due to the detail of this lesson, it is estimated that it will take in excess of 2 hours of GCSE-allocated teaching time to cover the content and this allows this to be used at the end of the topic or in the lead up to mock or terminal examinations.
This fully-resourced revision lesson has been designed to motivate and engage the students whilst they assess their understanding of the content detailed in topics 12 & 13 (Magnetism and the motor effect and electromagnetic induction) of the Pearson Edexcel GCSE Physics specification. These two topics tend to be poorly understood so time has been taken to plan activities that challenge the key details of the specification and provide clear explanations so students can progress.
The PowerPoint and accompanying resources were written to cover as much of the content in both topics as possible, but the following points have received particular attention:
Attraction and repulsion between unlike and like poles respectively
Electromagnetic induction
The application of Fleming’s left-hand rule
Application of the equation involving magnetic flux density
Microphones and loudspeakers and the opposite conversions of a changing current to sound waves
The ability of transformers to change the size of alternating voltage
The advantage of power transmission in high voltage cables
The application of the transformer equations involving potential difference and turns and for transformers with 100% efficiency
Due to the heavy mathematical element of the specification, the required skills are tested throughout the lesson and guidance is given to allow differing abilities to access the work
An engaging lesson presentation (60 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit P2 (Electricity) of the AQA GCSE Combined Science specification.
The topics that are tested within the lesson include:
Circuit symbols
Current, resistance and potential difference
Series and parallel circuits
Direct and alternating potential difference
Mains electricity
Power
Static charge
Students will be engaged through the numerous activities including quiz rounds like “It doesnt HURT to CONVERT” and “Take the HOTSEAT” whilst crucially being able to recognise those areas which need further attention
This is an engaging and fully resourced REVISION lesson which uses a range of exam questions, understanding checks, quick differentiated tasks and quiz competitions to enable students to assess their understanding of the content within topic 1 (Energy) of the AQA GCSE Physics (8463) specification.
The specification points that are covered in this revision lesson include:
Students should be able to describe all the changes involved in the way energy is stored when a system changes, for common situations.
Students should be able to calculate the changes in energy involved when a system
Students should be able to calculate the amount of energy associated with a moving object, a stretched spring and an object raised above ground level
Students should be able to apply the equation to calculate the amount of energy stored in or released from a system as its temperature changes
Students should know that the specific heat capacity of a substance is the amount of energy required to raise the temperature of one kilogram of the substance by one degree Celsius
Students should be able to define power as the rate at which energy is transferred or the rate at which work is done
Students should know that energy can be transferred usefully, stored or dissipated, but cannot be created or destroyed
Students should be able to describe, with examples, how in all system changes energy is dissipated, so that it is stored in less useful ways. This energy is often described as being ‘wasted’
Students should be able to explain ways of reducing unwanted energy transfers, for example through lubrication and the use of thermal insulation.
Students should be able to calculate the energy efficiency for any energy transfer using the recalled equation
Students should know the main energy resources available for use on Earth including fossil fuels (coal, oil and gas), nuclear fuel, biofuel, wind, hydro-electricity, geothermal, the tides, the Sun and water waves.
The students will thoroughly enjoy the range of activities, which include quiz competitions such as “It’s time for ACTION” where they have to compete to be the 1st to recognise a process ending in -tion from its description whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
This is a detailed and engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 1 (Forces and motion) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first assessment in June 2019.
The specification points that are covered in this revision lesson include:
Know and use the relationship between average speed, distance moved and time taken
Know and use the relationship between acceleration, change in velocity and time taken
Plot and explain velocity-time graphs
Determine the distance travelled from the area between a velocity−time graph and the time axis
Use the relationship between final speed, initial speed, acceleration and distance moved
Understand how vector quantities differ from scalar quantities
Understand that force is a vector quantity
Know that friction is a force that opposes motion
Know and use the relationship between unbalanced force, mass and acceleration
Know and use the relationship between weight, mass and gravitational field strength
Know that the stopping distance of a vehicle is made up of the sum of the thinking distance and the braking distance
Describe the factors affecting vehicle stopping distance, including speed, mass, road condition and reaction time
Know and use the relationship between momentum, mass and velocity
Use the idea of momentum to explain safety features
Use the conservation of momentum to calculate the mass, velocity or momentum of objects
Use the relationship between force, change in momentum and time taken
Demonstrate an understanding of Newton’s third law
Know and use the relationship between the moment of a force and its perpendicular distance from the pivot
The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Fill the VOID” where they have to compete to be the 1st to complete one of the know and use equations whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams
This fully-resourced revision lesson has been designed to engage and motivate the students whilst they assess their understanding of the content in topic 7 (Astronomy) of the Pearson Edexcel GCSE Physics specification.
The lesson has been written to include as many of the specification points as possible but the following have been given particular attention:
Explain how the value of g differs between the Earth’s surface and the surface of other bodies in space
Recall the bodies that are found in our Solar system
Recall the names and order of the eight planets
Describe evidence supporting the Big Bang theory
Describe that there will be a change in the frequency and wavelength of a wave if the source of the wave is moving in relation to the observer
Describe why the red-shift of galaxies provides evidence for the expansion of the Universe
Describe the evolution of stars of similar mass to our Sun
Describe the evolution of stars with a larger mass than our Sun
This topic contains a number of principles or theories which can be poorly understood by students so extra time has been taken to guide them in the formation of descriptions and explanations.
This detailed and engaging lesson has been written to challenge the students on their recall and application of the 23 equations which they have to know for the AQA GCSE Physics exams. The lesson is designed to not only check that they know these equations but also on their ability to rearrange formulae when required and to convert between units. The main task of the lesson consists of 13 exam-style questions which challenge 12 of these recall equations and then an engaging quiz competition and class discussions are used to identify the other 11. Students are guided throughout the lesson in the use of the mathematical skills and are shown examples to aid their progress.
This lesson has been designed to tie in with the other 8 uploaded revision lessons which cover the content of the 8 topics on the AQA GCSE Physics specification
This is a fully-resourced revision lesson which covers the content detailed in topic 10 (electricity and circuits) of the Pearson Edexcel GCSE Physics specification. The engaging PowerPoint and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quiz competitions to allow students to assess their understanding and ultimately recognise those areas which need further consideration.
The following specification points have been given particular attention in this lesson:
The electrical symbols that represent the electrical components
Describe the differences between series and parallel circuits
Recall that a voltmeter is connected in parallel
One volt is equal to one joule per coulomb
Recall and use the equations that calculate energy transferred, charge, potential difference, power and electrical power
Recall that an ammeter is connected in series
Calculate the currents, potential differences and resistances in series and parallel circuits
Explain how current varies with potential difference in resistors
Know the functions of the wires in a plug and the safety features
This lesson has been designed to fall in line with the heavy mathematical content of the Physics specification with a number of calculation tasks and students are guided through the range of skills that they will have to employ
This is an engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 5 (Forces) of the AQA GCSE Physics (8463) specification.
The specification points that are covered in this revision lesson include:
Scalar and vector quantities
Contact and non-contact forces
Gravity
Work done and energy transfer
Forces and elasticity
Moments
Speed
Velocity
Acceleration
Newton’s laws
Stopping distance
Momentum
Conservation of momentum
Changes in momentum
The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Fill the VOID” where they have to compete to be the 1st to complete one of the recall equations whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
This lesson covers a large number of the key topics from the AQA GCSE Combined Physics course in the final weeks before the GCSE examinations. The extensive PowerPoint and accompanying resources use a range of activities and tasks including exam questions and quizzes to challenge the students on their knowledge of the following topics and skills:
Units and converting between units
Answering calculation questions (with 1 or 2 equations)
Newton’s 2nd and 3rd laws of motion
Resultant forces
Conservation of energy
Efficiency and reducing wasted energy
Conservation of momentum
Scalar and vector quantities
Motions on a velocity-time graph
The relationship between force and the extension of a spring
Setting up electrical circuits
Current, potential difference and resistance in series and parallel circuits
The properties of ionising radiation
Calculating half-lives
Constructing decay equations
The properties of waves
Refraction
This resource is likely to take 4 or more lessons to cover all of the content.
This engaging revision lesson uses a range of tasks to allow students to check their understanding of radioactive decay and nuclear radiation. The PowerPoint and accompanying resources have been designed to challenge the detail of point 4.2 of the AQA GCSE physics and combined science specifications and the following sub-topics are covered:
Properties of alpha, beta and gamma
Bq as the unit of radioactivity
Detecting sources of radiation based on their penetrating power
Half-life
Decay equations
Changes to the mass and charge of the nucleus after decay
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics P1 - P4, that will assessed on PAPER 5. It has been specifically designed for students on the AQA GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood.
The lesson has been written to cover as many specification points as possible but the following sub-topics have received particular attention:
The size of an atom
The differences between isotopes
Using the half-life in calculations
The 13 recall and apply equations in topics P1 - P4
Electrical circuit symbols
Measuring current using an ammeter
Current and potential difference in series and parallel circuits
Changes in resistance in resistors
Mains domestic supply
Kinetic, internal and potential energy in a system
Calculating specific heat capacity and latent heat
Physical and chemical changes
Conservation of energy
Calculating gravitational potential and kinetic energy
Penetrating abilities of the different types of radiation
In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as circuit calculations and rearranging formulae and converting between units.
Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 or 4 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 5 exam.
This fully-resourced revision lesson has been written to cover the major details of the radioactivity topic that can be assessed in the GCSE Physics and Combined Science (HT) exams. The engaging PowerPoint and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quiz competitions to allow students to assess their understanding and to ultimately recognise those areas which need further consideration.
The following points are covered in this revision lesson:
Describe the structure of atom and recall the typical size
Recall the relative masses and charges of the subatomic particles and use the number of protons and electrons to explain why atoms are neutral
Describe the structure of the nuclei of an isotope
Explain what is meant by background radiation and recall sources
Describe methods for measuring and detecting radioactivity
Describe the process of beta minus and beta plus decay
Write and balance nuclear decay equations
Explain the effects on the proton and nucleon number as a result of decay
Recall that the unit of radioactivity is Bq
Use the concept of half-life to carry out calculations
Describe the use of isotopes in PET scanners
Describe the differences between nuclear fission and fusion
Explain how the fission of U-235 produces two daughter nuclei, two or three neutrons and releases energy
Write equations to represent nuclear fission
Describe the advantages and disadvantages of nuclear energy
Explain why nuclear fusion cannot happen at low temperatures and pressures
A quick, concise lesson presentation (15 slides) which together with a question worksheet focuses on ensuring that students can define an isotope and pick these substances out from a selection of substances. The lesson begins by looking at the number of sub-atomic particles in an aluminium atom so that students can recall what is shown by the atomic and mass numbers. This will enable students to calculate the number of protons, neutrons and electrons in three given isotopes and as a result, complete a definition of these substances. The remainder of this short lesson involves 4 application questions where students either have to recognise isotopes from a table or from a diagram and also are asked to write out the formula of an isotope. Ideally this lesson will be taught in conjunction with a lesson on atomic structure.
This bundle of 14 lessons covers the majority of the content in Topic P5 (Forces) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include:
Contact and non-contact forces
Weight, mass and gravity
Resultant forces
Work done
Investigating springs
Speed and velocity
Acceleration
Distance and velocity-time graphs
Terminal velocity
Stopping distances
Reaction times
Momentum
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This is a concise, fast-paced lesson designed to cover the key terminology associated with the waves topic at GCSE and ensure that students are able to recognise and use these terms in context. A number of terms, such a transverse, are known by students but rarely correctly used in written descriptions. Therefore, through a range of tasks and quick competitions, students will meet these terms, learn how to define them and then be asked to apply their knowledge to understanding check questions. This lesson has been written in conjuction with the lesson titled “Wave velocity” and students are challenged to keep an A - Z of key terms during both lessons so they can challenge themselves during revision points.
Alongside the “properties of waves” lesson, this lesson is also designed to be fast-paced with a focus on the key terminology of the waves topic as well as looking at the different calculations that can be carried out. It is written for GCSE students and challenges their mathematical skills throughout, by asking them to rearrange formulae, convert units and write in standard form. The lesson begins by recalling the definitions for wavelength, frequency and wave velocity and then introducing them to the equation that links them. The velocity of sound waves in three mediums is the initial focus, so that students can recognise that the velocity is higher in liquids and solids than in air. Moving forwards, the concept of an echo is discussed and again a calculation used to show them how distance could be worked out with the added extra of the final division by 2. There are progress checks such as these written throughout the lesson so that students have the opportunity to assess their understanding. A number of quick competitions are also included, in order to maintain engagement whilst check understanding in a different form.
This bundle of 7 lessons covers a lot of the content in Topic P6 (Radioactivity) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include:
The atom
Isotopes
Background radiation
Alpha, beta and gamma radiation
Nuclear decay equations
The unit of radioactivity
Half-life
The dangers of ionising radiation
The differences between irradiation and contamination
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 4 lessons covers the majority of the content in Topic P4 (Waves) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include:
Using the terms frequency and wavelength
Using the terms amplitude, period and velocity
Longitudinal and transverse waves
Calculating wave speed
Refraction of waves
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 5 lessons covers the majority of the content in Topic P3 (Conservation of energy) of the Edexcel GCSE Combined Science & GCSE Physics specifications. The topics covered within these lessons include:
Calculating change in gravitational potential energy
Kinetic energy
Conservation of energy
Reducing unwanted energy transfer
Efficiency
Increasing efficiency
Energy sources
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding