A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Every one of the lessons included in this bundle is detailed, engaging and fully-resourced, and has been written to cover the content as detailed in topic 4 of the AQA A-level Biology specification. The wide range of activities will maintain engagement whilst supporting the explanations of the content to allow the students to build a deep understanding of genetic information, variation and relationships between organisms.
The following 18 lessons covering the 7 sub-topics are included in this bundle:
4.1: DNA, genes and chromosomes
DNA in prokaryotes and eukaryotes
Genes
4.2: DNA and protein synthesis
Genome, proteome and the structure of RNA
Transcription and splicing
Translation
4.3: Genetic diversity can arise as a result of mutation or during meiosis
The genetic code
Gene mutations
Chromosome mutations
Meiosis
4.4: Genetic diversity and adaptation
Genetic diversity
Natural selection
Directional and stabilising selection
Adaptations
4.5: Species and taxonomy
Species and taxonomy
4.6: Biodiversity within a community
Biodiversity within a community
Calculating an index of diversity
The balance between conservation and farming
4.7: Investigating diversity
Investigating diversity
Interpreting mean values and the standard deviation
If you would like to sample the quality of the lessons in this bundle, then download the DNA in prokaryotes and eukaryotes, structure of RNA, gene mutations, natural selection and standard deviation lessons as these have been uploaded for free
This lesson introduces the key inorganic ions that are involved in biological processes and includes cations and anions. The engaging PowerPoint and accompanying resources have been designed to cover point 2.1.2 § of the OCR A-level Biology A specification but also makes links to topics in upcoming modules such as respiration, photosynthesis and neuronal communication.
The roles of the following ions are covered in this lesson:
phosphate
nitrate
chloride
hydroxide
hydrogencarbonate
hydrogen
ammonium
sodium
potassium
calcium
Extra time is taken during the lesson to describe how these ions are involved in the transport of carbon dioxide, the conduction of nervous impulses and blood clotting as well as other processes and a number of quiz competitions have been included to introduce key terms in a fun and memorable way
This concise lesson covers the content of specification point 5.1.5 (l) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the action of neuromuscular junctions. Due to a number of similarities between these structures and cholinergic synapses, this lesson uses prior knowledge of these connections between neurones to build a good understanding of the junctions. Students will discover that the events that occur at an axon tip mirror those which happen at the pre-synaptic bulb and this is then developed to look at the differences in terms of the events once the acetylcholine has bound to its receptor sites. There is a focus on the structure of the sarcolemma and time is taken to explain how the action potential is passed from this membrane to the transverse tubules in order to stimulate the release of calcium ions from the sarcoplasmic reticulum. As a result, this lesson ties in nicely with the following lesson on the contraction of skeletal muscle and students will be able to link the binding to troponin in that lesson to the release of these ions from this lesson.
Both of the main tasks of the lesson have been differentiated so that students of all abilities can access the work and make progress.
This lesson has been designed for those students studying on the OCR A-level Biology course and ties in nicely with the other uploaded lessons on module 5.1.5 (Animal and plant responses)
All 4 of the lessons that are included in this bundle are fully-resourced and contain a wide range of activities that will motivate and engage the students whilst covering the content as detailed in topic 4 of the CIE A-level Biology specification (Cell membranes and transport).
Exam-style questions which check on current and prior understanding, differentiated tasks, discussion points and quick quiz competitions cover the following specification points:
The fluid mosaic model of membrane structure
The roles of phospholipids, cholesterol, glycoproteins and proteins
The roles of channel and carrier proteins
Simple diffusion
Facilitated diffusion
Active transport, endocytosis and exocytosis
Osmosis and the effect of the movement of water on animal and plant cells
If you would like to sample the quality of these lessons, download the active transport lesson as this has been uploaded for free
This revision lesson focuses on the properties of waves and the process of refraction as detailed in topic 6 of the AQA physics and combined specifications. Each task in the PowerPoint and accompanying resources challenges the students on their understanding of the key terms frequency, period, wavelength, amplitude, transverse and longitudinal, and reminds them how to answer refraction questions by using explanations that involve density, speed and the change in direction of the light wave.
An engaging lesson presentation (41 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit P1 (Energy) of the AQA GCSE Combined Science specification (specification unit P6.1).
The topics that are tested within the lesson include:
Energy stores and systems
Changes in energy
Efficiency
Students will be engaged through the numerous activities including quiz rounds like “ERRORS with the equation calculations” whilst crucially being able to recognise those areas which need further attention
This bundle of 9 revision lessons uses a range of exam questions (with explained answers), differentiated tasks and quiz competitions to engage the students whilst challenging their knowledge of the content in the Pearson Edexcel IGCSE Physics specification:
All 8 topics are covered by the lessons in this bundle:
Topic 1: Forces and motion
Topic 2: Electricity
Topic 3: Waves
Topic 4: Energy resources and energy transfers
Topic 5: Solids, liquids and gases
Topic 6: Magnetism and electromagnetism
Topic 7: Radioactivity and particles
Topic 8: Astrophysics
There is also an additional lesson which challenges the students on their knowledge of the 21 Physics equations
If you want to see the quality of the lessons, download the topic 1 and 7 and equations revision lessons as these are free
This is a fully-resourced REVISION lesson which challenges the students on their knowledge of the content in TOPIC B5 (Health, disease and the development of medicines) of the Edexcel GCSE Combined Science specification. The lesson uses an engaging PowerPoint (79 slides) and accompanying worksheets to motivate students whilst they assess their understanding of this topic.
The lesson has been designed in the way that the students have to work their way through a series of wards at the hospital which deals with communicable diseases caused by a range of pathogens and the non-communicable diseases ward such as the cardiac ward where CHD patients are assessed and treated. A range of exam questions, differentiated tasks and quiz competitions back up the engaging lesson and are used to test the following sub-topics:
Bacterial, fungal and viral diseases in animals and plants
Treatment of bacterial infections with antibiotics
Preventing and reducing the spread of pathogens
Vaccinations
The physical and chemical defences of the human body
The risk factors of CHD
The range of surgical treatments for CHD
Calculating the BMI
Smoking and cardiovascular diseases
The mathematical element of the course is also tested throughout the lesson and students are given helpful hints on exam techniques and how to structure answers.
This resource is suitable for use at the end of topic B5 or in the lead up to mocks or the actual GCSE exams.
This bundle of 11 lessons covers a lot of the content in Topic P4 (Waves and radioactivity) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include:
Waves and their properties
Wave velocity
Reflection and Refraction
EM waves
Uses of EM waves
Isotopes
Radiation properties
Decay equations
Half-life
Background radiation
Dangers of radioactivity
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This lesson looks at the two stages of protein synthesis, transcription and translation, and focuses on the key details that students need to understand this potentially difficult topic. The lesson presentation has been deliberately written in a concise way to encourage the students to summarise the two stages and pick out the key points which will enable them to form longer answers when necessary. The lesson begins by introducing the students to RNA, and a quick check is done to see how much they can recall about the other nucleic acid, DNA. Moving forwards, students are challenged to study the structure of DNA and RNA in SPOT THE DIFFERENCE before being challenged to explain why RNA is necessary in this process. Time is taken to look at important sections such as complimentary base pairing and the identification of amino acids from the codon. A number of quick competitions have been written into the lesson to maintain engagement and the progress checks are regular so that students assess their understanding and any misconceptions can be quickly identified and addressed.
This lesson has been written for GCSE students but should a teacher want to teach an introduction lesson on protein synthesis before going into more detail at a later date, then this would be suitable.
All 4 lessons included in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 6.2 (Nervous coordination) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include:
The structure of a myelinated motor neurone
The establishment of a resting potential
Depolarisation
All or nothing principle
Factors affecting the speed of conductance
The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this module and earlier modules
If you would like to sample the quality of the lessons, download the saltatory conduction lesson which is free
Each of the 4 lessons included in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 7.3 (Evolution may lead to speciation) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include:
Phenotypic variation within a species
The effects of stabilising, directional and disruptive selection
The importance of genetic drift in causing changes in allele frequency
Allopatric and sympatric speciation
The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this module and earlier modules
If you would like to see the quality of the lessons, download the phenotypic variation lesson which is free
This engaging lesson explores the roles of the SAN, AVN, Bundle of His and Purkyne fibres in the transmission of the wave of excitation through the heart. The PowerPoint and accompanying resources have been designed to cover the first part of point 6.1.3 of the AQA A-level Biology specification which states that students should be able to describe the myogenic stimulation of the heart and the subsequent wave of electrical activity.
The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from topic 3. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology
This bundle contains 11 fully-resourced lessons which will engage and motivate the students whilst covering the following specification points in topics 7 and 8 of the CIE A-level Biology specification:
TOPIC 7
The structure of xylem vessel elements, phloem sieve tube elements and companion cells
The relationship between the structure and function of xylem vessel elements, phloem sieve tube elements and companion cells
Explain how hydrogen bonding of water molecules is involved with the movement in the xylem by cohesion-tension in transpiration pull and adhesion to cell walls
The pathways and mechanisms by which water and mineral ions are transported from the soil to the xylem and from roots to leaves
Assimilates move between sources and sinks between phloem sieve tubes
The mechanism by which sucrose is loaded into the phloem
The mass flow of phloem sap down a hydrostatic pressure gradient
TOPIC 8
The double, closed circulatory system of a mammal
The relationship between the structure and function of arteries, veins and capillaries
The role of haemoglobin in carrying oxygen and carbon dioxide
The significance of the oxygen dissociation curve of adult haemoglobin at different carbon dioxide concentrations
The external and internal structure of the heart
The cardiac cycle
The role of the SAN, AVN and Purkyne tissue in the initiation and conduction of the heart action
The lesson PowerPoints and accompanying resources contain a wide range of tasks which include exam-style questions with mark schemes, discussion points and quiz competitions that will check on current understanding as well as making links to previously covered topics.
This fully-resourced lesson describes how the release of ADH from the pituitary gland controls mammalian plasma concentration. The engaging PowerPoint and accompanying resources have been designed to cover the detail included in point 9.9 (iv) of the Edexcel A-level Biology B specification and also includes details of the roles of the osmoreceptors in the hypothalamus.
The principles of homeostasis and negative feedback were covered in an earlier lesson in topic 9, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics.
The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work.
All 10 lessons included in this bundle are highly detailed and are fully-resourced. The lesson PowerPoints and their accompanying worksheets contain a wide range of tasks that will engage and motivate the students whilst covering the following specification points as set out in topic 4 of the Edexcel International A-level Biology specification:
The structure and ultrastructure of plant cells
The function of the organelles in plant cells
The structure and function of starch and cellulose
The similarities and differences between the structures, position and functions of sclerenchyma, xylem and phloem
The importance of water and inorganic ions in plants
Understand that classification is a means of organising the variety of life based on relationships between organisms
New taxonomic groupings
The meaning of the terms biodiversity and endemism
Know how biodiversity can be measured within a habitat and within a species
Comparing biodiversity between habitats using the index of diversity
The adaptations of organisms to their environment
Use of the Hardy-Weinberg equation
Changes in allele frequency are the result of mutation and natural selection
Evaluate the methods used by zoos and seed banks in the conservation of endangered species and their genetic diversity
If you would like to sample the quality of lessons in this bundle then download the cellulose & starch and modern-day classification lessons as these have been uploaded for free
This fully-resourced lesson describes the key steps in the process of DNA replication, including the role of DNA polymerase. Both the detailed PowerPoint and accompanying resources have been designed to cover point 2.11 (i) of the Pearson Edexcel A-level Biology A specification and this lesson also explains why this replication is known as semi-conservative in order to prepare the students for the following lesson on Meselson and Stahl’s experiment.
The main focus of this lesson is the role of DNA polymerase in the formation of the growing nucleotide strands but the students will also learn that the hydrogen bonds between nucleotide bases are broken by DNA helicase and that DNA ligase joins the nucleic acid fragments. Time is taken to explain key details, such as the assembly of strands in the 5’-to-3’ direction, so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure and hydrolysis reactions through a range of exam questions and answers are displayed so that any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
This engaging revision lesson challenges the students on their knowledge of the communicable diseases topic as detailed in the AQA GCSE combined science specification. The PowerPoint and accompanying resources include a range of tasks that enable the students to assess their knowledge of the 7 viral, bacterial, fungal and protist infections that are listed in topic B3.1. This lesson has been designed to be used as a final revision resource as the GCSE exams approach, or as part of revision for an end of topic test.
The biological molecules topic is incredibly important, not just because it is found at the start of the course, but also because of its detailed content which must be well understood to promote success with the other 9 Edexcel A-level Biology B topics. Many hours of intricate planning has gone into the design of all of the 19 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked and misconceptions addressed and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions.
The following specification points are covered by the lessons within this bundle:
The differences between monosaccharides, disaccharides and polysaccharides
The structure of glucose and ribose
The formation of disaccharides and polysaccharides from monosaccharides
The structure of starch, glycogen and cellulose
The synthesis of a triglyceride
The differences between saturated and unsaturated lipids
The relationship between the structure of lipids and their roles
The structure and properties of phospholipids
The structure of an amino acid
The formation of polypeptides and proteins
The role of ionic, hydrogen and disulphide bonding in proteins
The levels of protein structure
The structure of collagen and haemoglobin
The structure of DNA
The semi-conservative replication of DNA
A gene is a sequence of bases on DNA that codes for an amino acid sequence
The structure of mRNA
The structure of tRNA
The process of transcription
The process of translation
Base deletions, insertions and substitutions as gene mutations
The effect of point mutations on amino acid sequences
The structure of enzymes as globular proteins
The concept of specificity and the induced-fit hypothesis
Enzymes are catalysts that reduce activation energy
Understand how temperature affects enzyme activity
Enzymes catalyse a wide range of intracellular reactions as well as extracellular ones
The role of inorganic ions in plants
The importance of water for living organisms
Due to the detail included in these lessons, it is estimated that it will take in excess of 2 months of allocated A-level teaching time to complete.
If you would like to see the quality of the lessons then download the monosaccharides, disaccharides and polysaccharides, glucose and ribose, triglycerides, structure of DNA and transcription lessons as these have been uploaded for free.