Hero image

GJHeducation's Shop

Average Rating4.50
(based on 923 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1287k+Views

2088k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Alloys
GJHeducationGJHeducation

Alloys

(0)
A fully-resourced lesson which explores how the composition of different alloys is related to their properties and their uses. The lesson includes an engaging and informative lesson presentation (38 slides) and an associated differentiated worksheet. The lesson begins by challenging the students to use their Chemistry knowledge of numbers to come up with the letters of the word alloy. Students are introduced to the definition of this key term and then use a wordsearch to find both the names of the alloys but also the metals that are found in these mixtures. The main aim of this lesson is to get students to understand why alloys are chosen for jobs rather than pure metals and there is a focus on atoms and their arrangement. Students are challenged to use the example of copper and brass to complete a summary passage which is differentiated so that those who need more assistance are still able to access the work. The remainder of the lesson focuses on steel and solder, again exploring how their different features are related to how they are used in modern day life. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding and a range of quick quiz competitions will aid engagement. This lesson has been designed for GCSE students but could be used with KS3 students who are looking at mixtures within the atoms and elements topic.
AQA A-level Biology Topic 4 REVISION (Genetic information and variation)
GJHeducationGJHeducation

AQA A-level Biology Topic 4 REVISION (Genetic information and variation)

(0)
This is a fully-resourced revision resource which has been designed to encourage students to evaluate their understanding of the content in TOPIC 4 of the AQA A-level Biology specification (Genetic information, variation and relationships between organisms) . The resource includes an engaging PowerPoint (96 slides) and associated worksheets, some of which have been differentiated to allow those struggling with the content to access the work. The wide range of activities which includes exam questions, quick tasks and quiz competitions will motivate the students whilst they assess their knowledge and recognise those areas which require even further attention. The lesson has been designed to cover as many sub-topics as possible but the following have been given particular attention: Classification hierarchy DNA in prokaryotes and eukaryotes The binomial naming system Phylogeny Modern day classification using biological molecules Calculating biodiversity Selection pressures and types of selections Transcription Gene mutations Physiological, behavioural and anatomical adaptations Meiosis and variation Non-disjunction The mathematical element of this topic and the course is challenged throughout the lesson and helpful hints are regularly provided to help students to structure their answers. This resource can be used as a revision aid at the end of the topic, in the lead up to AS or A2 mocks or in the lead up to the actual terminal A-level exams.
Structure of a muscle fibre (Edexcel A-level Biology)
GJHeducationGJHeducation

Structure of a muscle fibre (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at the detailed structure of a muscle fibre, and focuses on the proteins, bands and zones that are found in the myofibril. The engaging PowerPoint and acccompanying resource have been designed to cover point 7.10 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The lesson begins with an imaginary question from the quiz show POINTLESS, where students have to recognise a range of fields of study. This will reveal myology as the study of muscles so that key terms like myofibril, myofilament and myosin can be introduced. Students should have met these terms as well as actin when learning about the sliding filament theory in topic 7.2, so this acts as a recall. Moving forwards, students will be shown the striated appearance of this muscle so they can recognise that some areas appear dark where both myofilaments are found and others as light as they only contain actin or myosin. A quiz competition is used to introduce the A band, I band and H zone and students then have to use the information given to label a diagram of the myofibril. The final task challenges the students to use their knowledge of the sliding filament theory to recognise which of these bands or zones narrow or stay the same length when muscle is contracted.
AQA GCSE Chemistry TOPIC 7 REVISION (Organic chemistry)
GJHeducationGJHeducation

AQA GCSE Chemistry TOPIC 7 REVISION (Organic chemistry)

(0)
An engaging lesson presentation (67 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within TOPIC 7 (Organic chemistry) of the AQA GCSE Chemistry specification (specification point C4.7) The topics that are tested within the lesson include: Crude oil, hydrocarbons and alkanes Fractional distillation and petrochemicals Properties of hydrocarbons Cracking and alkenes Alkenes Alcohols Carboxcylic acids Addition polymerisation Condensation polymerisation Students will be engaged through the numerous activities including quiz rounds like “What FRACTION of this is correct” and “Are you on FORM” whilst crucially being able to recognise those areas which need further attention
Temperature and the rate of reaction
GJHeducationGJHeducation

Temperature and the rate of reaction

(0)
A practical based lesson presentation (26 slides) that investigates how increasing the temperature affects the rate of reaction and helps students to explain the trend in the results. Students can either carry out the reaction between sodium thiosulphate and hydrochloric acid or use the results which are provided. The equation to work out the rate of reaction is introduced to the students and they are challenged to plot the results on a line graph. A key term to be used in the explanation is introduced through a quick competition and then students are challenged to explain the trend
Pressure and the position of the equilibrium
GJHeducationGJHeducation

Pressure and the position of the equilibrium

(0)
This concise lesson presentation (20 slides) guides students through the effect of changing pressure on the position of the equilibrium. The key skill to this topic involves recalling the rule of increasing pressure and being able to recognise how many moles are on each side of the reaction. For this reason, time is taken to remind the students of the meaning of the mole numbers in a reaction and working through an example together so they can see which side will be favoured. The final part of the lesson involves a game called “The PRESSURE is on” where students are in a race against the clock to balance an equation and then work out which way the equilibrium will shift when either the pressure is increased or decreased. This lesson has been written for GCSE students.
Fast & slow twitch muscle fibres (Edexcel A-level Biology A)
GJHeducationGJHeducation

Fast & slow twitch muscle fibres (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the structural and physiological differences between fast and slow twitch muscle fibres. The detailed PowerPoint and accompanying resources have been designed to cover point 7.10 (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and due to the obvious links, this lesson also challenges the students on their knowledge of respiration from earlier in topic 7 and cell structures and biological molecules from topics 1, 2 and 3 The following structural and physiological characteristics are covered over the course of this lesson: Reliance on the aerobic or anaerobic pathways to generate ATP Resistance to fatigue mitochondrial density capillary density myoglobin content (and colour) fibre diameter phosphocreatine content glycogen content A wide variety of tasks are used to cover this content and include knowledge recall and application of knowledge exam-style questions with fully-displayed mark schemes as well as quick quiz competitions to maintain motivation and engagement. This lesson has been specifically planned to tie in with the previous lesson in this topic covering the contraction of skeletal muscles by the sliding filament mechanism
Control of ventilation rate (Edexcel A-level Biology A)
GJHeducationGJHeducation

Control of ventilation rate (Edexcel A-level Biology A)

(0)
This detailed lesson describes how changes in ventilation rate are brought about to allow for the delivery of oxygen and the removal of carbon dioxide. The engaging PowerPoint and accompanying resources have been designed to cover the second part of point 7.9 (ii) in the Pearson Edexcel A-level Biology A specification. The previous lesson described the control of heart rate so this lesson has been written to tie in with this and to use this knowledge to further the students understanding of the control of ventilation rate. The lesson begins with a focus on the muscles involved in ventilation, specifically the diaphragm and external intercostal muscles, so that students can understand how their contraction results in an increase in the volume of the thoracic cavity. Boyle’s law is briefly introduced to allow students to recognise the relationship between volume and pressure so that the movement of air with the pressure gradient can be described. Time is then taken to consider the importance of inhalation and an exam-style question challenges the students to explain that a constant supply of oxygen to the alveoli is needed to maintain a steep concentration gradient with the surrounding capillaries. The students are then tasked with writing a description of exhalation at rest using the description of inhalation as their guide. The rest of the lesson focuses on the mechanisms involved in increasing the rate and depth of breathing during exercise. Students will use their knowledge of the control of heart rate to recall that chemoreceptors detect changes in oxygen and carbon dioxide and blood pH and that the medulla oblongata processes the sensory information that it receives before coordinating a response. The final task challenges them to use the information provided in this lesson and the previous one to order 10 detailed descriptions so they can form a complete passage about this control system.
Module 4.2.2: Classification and evolution (OCR A-level Biology A)
GJHeducationGJHeducation

Module 4.2.2: Classification and evolution (OCR A-level Biology A)

7 Resources
Classification and evolution is a topic that students can find difficult, which may be for a number of reasons that include a lack of engagement during lessons or because these topics are taught quickly as exams approach at the end of year 12. However, a clear understanding is critical, as assessment questions on the content of this module are common and are often worth a significant number of marks. In line with this, the planning of each of the 7 lessons in this bundle has focused on the inclusion of a wide range of tasks that will engage and motivate the students whilst covering the following points as detailed in module 4.2.2 of the OCR A-level Biology A specification: The biological classification of species The taxonomic hierarchy The binomial system of naming species and the advantages of such a system The features used to classify organisms into the five kingdoms The evidence that has led to new classification systems, such as the three domains of life The different types of variation Using standard deviation to measure the spread of a set of data Using the Student’s t-test to compare means of data values of two populations Using the Spearman’s rank correlation coefficient to consider the relationship of the data The different types of adaptations of organisms to their environment The mechanism by which natural selection can affect the characteristics of a population over time How evolution in some species has implications for human populations If you would like to sample the quality of the lessons included in this bundle, then download the following lessons as these have been uploaded for free: Taxonomic hierarchy and the binomial naming system Adaptations & natural selection
Topic 8: Coordination, Response and Gene Technology (Edexcel Int. A-level biology)
GJHeducationGJHeducation

Topic 8: Coordination, Response and Gene Technology (Edexcel Int. A-level biology)

11 Resources
Topic 8 of the Edexcel International A-level biology specification is content heavy and therefore all 11 lessons included in this bundle have been planned to cover this content in an engaging and memorable way. The lessons are filled with a wide variety of tasks, including understanding and prior knowledge checks, guided discussion periods and quick quiz competitions. Answers to all of the knowledge checks are embedded into the PowerPoints to allow the students to assess their progress. The following specification points are covered by this bundle: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.8, 8.10, 8.13, 8.14, 8.18, 8.19, 8.20 If you would like to get a sense for the quality of the lessons in this bundle, then download the nervous and hormonal control, saltatory conduction and pupil reflex lessons as these have been shared for free.
Topic 9.4: The mammalian nervous system (Edexcel A-level biology B)
GJHeducationGJHeducation

Topic 9.4: The mammalian nervous system (Edexcel A-level biology B)

4 Resources
All 4 lessons in this bundle are detailed and highly engaging and will maintain the interest of the students whilst covering the content of topic 9.4 of the Edexcel A-level biology B specification. The lessons are filled with a wide variety of tasks which challenge the students to develop their understanding of the structure and function of the mammalian nervous system. Each of the 5 specification points in topic 9.4 are fully covered by these lessons.
Vaccinations & immunity (AQA A-level Biology)
GJHeducationGJHeducation

Vaccinations & immunity (AQA A-level Biology)

(0)
This fully-resourced lesson describes the use of vaccinations to protect individuals and populations and the differences between active and passive immunity. The engaging PowerPoint and accompanying resources have been designed to cover the fourth part of point 2.4 of the AQA A-level Biology specification and there is also a description and discussion on the concept of herd immunity. The previous lesson finished with a series of exam questions where students observed differences between the primary and secondary immune responses so the start of this lesson uses an imaginary game of TOP TRUMPS to challenge them on the depth of their understanding. This will act to remind them that a larger concentration of antibodies is produced in a quicker time in the secondary response. The importance of antibodies and the production of memory cells for the development of immunity is emphasised and this will be continually referenced as the lesson progresses. The students will learn that this response of the body to a pathogen that has entered the body through natural processes is natural active immunity. Moving forwards, time is taken to look at vaccinations as an example of artificial active immunity. Another series of questions focusing on the MMR vaccine will challenge the students to explain how the deliberate exposure to antigenic material activates the immune response and leads to the retention of memory cells. A quick quiz competition is used to introduce the variety of forms that the antigenic material can take along with examples of diseases that are vaccinated against using these methods. The eradication of smallpox is used to describe the concept of herd immunity and the students are given time to consider the scientific questions and concerns that arise when the use of this pathway is a possible option for a government. The remainder of the lesson looks at the different forms of passive immunity and describes the drawbacks in terms of the need for a full response if a pathogen is reencoutered.
Detection of light (Edexcel A-level Biology B)
GJHeducationGJHeducation

Detection of light (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the structure of the human retina and explains how the rhodopsin in rod cells allows vision in low light intensity. The detailed PowerPoint and accompanying resources have been designed to cover points 9.7 (i), (ii) & (iii) of the Edexcel A-level Biology B specification but also makes links to previously covered topics such as cell structure and nervous transmission. It is likely that students will be aware that the human retina contains rod and cone cells, so this lesson builds on that knowledge and adds the detail needed at this level. Students will discover that the optical pigment in rod cells is rhodopsin and that the bleaching of this into retinal and opsin results in a cascade of events that allows an action potential to be initiated along the optic nerve. Time is taken to go through the events that occur in the dark and then the students are challenged to use this as a guide when explaining how the events differ in the light. Key terms like depolarisation and hyperpolarisation, that were met in topic 9.5, are used to explain the changes in membrane potential and the resulting effect on the connection with the bipolar and ganglion cells is then described. Cone cells are also introduced, with the main focus being their distribution in the centre of the fovea which is used to explain colour vision in bright light.
Gross structure of the human gas exchange system (CIE A-level Biology)
GJHeducationGJHeducation

Gross structure of the human gas exchange system (CIE A-level Biology)

(0)
This lesson describes the gross structure of the human gas exchange system and the functions of the structural components like goblet cells. The PowerPoint and accompanying resources have been designed to cover points 9.1 (a & c) of the CIE A-level Biology specification and has been specifically planned to prepare students for an upcoming lesson where the gas exchange between the alveoli and the blood is described. The lesson is filled with a range of activities such as guided discussion periods, exam-style questions (with markschemes) and quiz competitions and these run alongside the slides containing the detailed A-level Biology content to cover the following features: The incomplete rings of cartilage, ciliated pseudostratified columnar epithelium and goblet cells in the trachea The narrowing airways of the primary, secondary and tertiary bronchi The elastic fibres and smooth muscle in the terminal and respiratory bronchioles The pleural cavity and fluid of the lungs When describing the production of mucus by the goblet cells in the trachea, time is taken to consider cystic fibrosis and the inheritance of this autosomal recessive disorder. Students will be supported in working out genotypes from a pedigree tree to prepare them for topic 16 (Inherited change)
Topic 18: Biodiversity, classification and conservation (CIE A-level Biology)
GJHeducationGJHeducation

Topic 18: Biodiversity, classification and conservation (CIE A-level Biology)

9 Resources
Hours of research and planning has gone into each and every one of the 9 lessons that are included in this lesson bundle that covers topic 18 of the CIE A-level Biology course . Conscious that some students do not fully engage in the topics of biodiversity, classsification and conservation, the lessons have been designed to contain a wide range of tasks which will motivate the students whilst the content of the following specification points are covered: 18.1: Biodiversity Define the terms species, ecosystem and niche Explain that biodiversity can be considered at three different levels Explain the importance of random sampling in determining the biodiversity of an area Use suitable methods to assess the distribution and abundance of organisms in a local area Use Spearman’s rank correlation to analyse the relationship between the distribution and abundance of species and abiotic or biotic factors Use Simpson’s Index of diversity 18.2: Classification Describe the classification of species into the 8 taxonomic divisions Outline the characteristic features of the three domains Outline the characteristic features of the kingdoms Explain why viruses are not included in the three domain classification and outline how they are classified 18.3: Conservation The reasons for the need to maintain biodiversity Discuss methods of protecting endangered species The role of non-governmental organisations like the WWF and CITES in local and global conservation If you would like to sample the quality of the lessons in this bundle, then download the Spearman’s rank correlation, features of the kingdoms and WWF, CITES and conservation lesson as these have been uploaded for free
Module 5.1.5: Plant and animal responses (OCR A-level Biology A)
GJHeducationGJHeducation

Module 5.1.5: Plant and animal responses (OCR A-level Biology A)

11 Resources
All 11 lessons included in this bundle are detailed and contain a wide variety of tasks to challenge and engage the students whilst covering this potentially difficult topic. The content of this module, titled plant and animal responses, is regularly assessed in the PAPER 1 and 3 OCR examinations, so these lessons have been filled with assessment-style questions to continually expose the students to this type of material. The following specification points are covered by this bundle: 5.1.5 a, b, d, g, h, i, k, and l. If you would like to sample the quality of the lessons before committing to the bundle, then why not download the role of plant hormones, organisation of the nervous system and sliding filament theory lessons, as these have been shared for free?
Module 3.1.2: Transport in animals (OCR A-level Biology)
GJHeducationGJHeducation

Module 3.1.2: Transport in animals (OCR A-level Biology)

9 Resources
Each of the 9 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in module 3.1.2 (Transport in animals) of the OCR A-Level Biology A specification. The specification points that are covered within these lessons include: A double, closed circulatory system The structure and function of arteries, arterioles, capillaries, venules and veins The formation of tissue fluid from plasma The internal and external structure of the mammalian heart The cardiac cycle How heart action is initiated and coordinated The use and interpretation of ECGs The role of haemoglobin in transporting oxygen and carbon dioxide The dissociation curve for foetal and adult haemoglobin The Bohr effect The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics If you would like to see the quality of the lessons, download the formation of tissue fluid. heart action and ECGs lessons as these are free
The PHOTOSYNTHESIS reaction
GJHeducationGJHeducation

The PHOTOSYNTHESIS reaction

(0)
A fully-resourced lesson which explores the photosynthesis reaction, focusing on where it takes place and the reactants and products of this chemical reaction. This lesson includes an engaging and detailed lesson presentation (45 slides), a summary task and a crossword which is used throughout the lesson. Students will already have a fair knowledge of this topic from KS3 so this lesson has been written to take that knowledge and push it forward. Key details are added throughout the lesson such as how the reactants enter the plant by osmosis and diffusion and also how water travels from the roots to the leaves in the xylem vessel. An engaging competition runs during the lesson called “LIGHT up the crossword” and this enables the key terms of the topic to be stored in one place. There are two main written tasks during the lesson which challenge the students to summarise the reaction using all that they have learnt and also to state the different uses of glucose. The lesson has been linked to related topics with understanding checks written in at regular intervals so this knowledge can be assessed. This lesson has been written for GCSE students but could be used with higher ability KS3 students who want to learn more than they currently know
Simple and Giant COVALENT molecules
GJHeducationGJHeducation

Simple and Giant COVALENT molecules

(0)
This lesson has been written with the aim of engaging students in the topic of simple and giant covalent molecules, as this is a topic which is often considered to be boring or is brushed over. A variety of tasks have been used to maintain the interest whilst ensuring that they key details and Science are known and understood. The lesson begins with a quick recap task where students have to recognise a covalent bond from a description and fill the missing part. Moving forwards, they are introduced to the fact that covalent molecules can be simple or giant. They are then presented with a table showing some properties of covalent molecules and having to group them as simple or giant in the short space of time that the table remains displayed on the board. This task challenges their observational skills, something which will again be tested later in the lesson as they study the structure of graphite and diamond. Time is taken to ensure that key details such as the strong covalent bonds in both sets of molecules is understood and that it is the weak intermolecular forces which are actually responsible for the low melting and boiling points. The last part of the lesson introduces diamond and graphite as allotropes of carbon and students will briefly learn why one of these conducts electricity whilst the other doesn’t. If you want a lesson about these allotropes in more detail, then please look for “Diamond and Graphite”. Progress checks have been written into the lesson at regular intervals so that students are constantly assessing their understanding and so misconceptions are quickly identified. This lesson has been written for GCSE students (14 - 16 years of age in the UK)
AQA GCSE Science C3 REVISION (Quantitative chemistry)
GJHeducationGJHeducation

AQA GCSE Science C3 REVISION (Quantitative chemistry)

(0)
An engaging lesson presentation (63 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within the Chemistry unit C3 (Quantitative chemistry) of the AQA GCSE Combined Science specification (specification point C5.3). The lesson includes useful hints and tips to encourage success in assessments. For example, students are shown how to recognise whether to use Avogadro’s constant or the moles formula in a moles calculation question. The topics that are tested within the lesson include: Conservation of mass and balanced symbol equations Relative formula mass Mass changes when a reactant or product is a gas Moles Amounts of substances in equations Concentration of solutions Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY” and “Are you on FORM” whilst crucially being able to recognise those areas which need further attention