Hero image

Paperfriendlyresources's Shop

Average Rating4.27
(based on 235 reviews)

Paperfriendlyresourcesuk New Resources Coming soon! PFR resources have been designed to ensure good quality teaching is not compromised by printing restrictions or buffering videos. Lessons that include worksheets have been created for teachers to print at least two copies to an A4 sheet.

371Uploads

318k+Views

259k+Downloads

Paperfriendlyresourcesuk New Resources Coming soon! PFR resources have been designed to ensure good quality teaching is not compromised by printing restrictions or buffering videos. Lessons that include worksheets have been created for teachers to print at least two copies to an A4 sheet.
AQA new specification-B14 Variation and evolution-Separate science bundle
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-B14 Variation and evolution-Separate science bundle

7 Resources
This bundle contains the content for SEPARATE/BIOLOGY ONLY students. It includes the B14 unit-Variation and evolution. All lessons have been done in accordance to the specification requirements and have been pitched to a higher ability class. Videos have been embedded for ease of use, and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 10% by purchasing this bundle :) Total = 7 lessons Lesson 1-Variation Lesson 2-Evolution by natural selection Lesson 3-Selective breeding Lesson 4-Genetic engineering Lesson 5-Cloning Lesson 6-Adult cell cloning Lesson 7-Ethics of genetic technologies Good luck with your lessons :)
AQA new specification-The history of genetics-B15.1
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-The history of genetics-B15.1

(0)
The history of genetics lesson created in accordance to the NEW AQA Specification (9-1). Designed for a separates class. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.3.3 Relevant chapter: B15 Genetics and evolution. AQA Biology trilogy edition textbook-Page 234-235 Students are required to know the following; Students should be able to: • describe the development of our understanding of genetics including the work of Mendel • understand why the importance of Mendel’s discovery was not recognised until after his death. In the mid-19th century Gregor Mendel carried out breeding experiments on plants. One of his observations was that the inheritance of each characteristic is determined by ‘units’ that are passed on to descendants unchanged. In the late 19th century behaviour of chromosomes during cell division was observed. WS 1.1 Our current understanding of genetics has developed over time. In the early 20th century it was observed that chromosomes and Mendel’s ‘units’ behaved in similar ways. This led to the idea that the ‘units’, now called genes, were located on chromosomes. In the mid-20th century the structure of DNA was determined and the mechanism of gene function worked out. This scientific work by many scientists led to the gene theory being developed.
AQA new specification-Inheritance in action-B13.7
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Inheritance in action-B13.7

(2)
Inheritance in action lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides and an interactive quiz. AQA spec link: 6.1.6 Relevant chapter: B13 Genetics and reproduction. AQA Biology third edition textbook-Page 208-209. Students should be able to explain the terms: • gamete • chromosome • gene • allele • dominant • recessive • homozygous • heterozygous • genotype • phenotype. Some characteristics are controlled by a single gene, such as: fur colour in mice; and red-green colour blindness in humans. Each gene may have different forms called alleles. The alleles present, or genotype, operate at a molecular level to develop characteristics that can be expressed as a phenotype. A dominant allele is always expressed, even if only one copy is present. A recessive allele is only expressed if two copies are present (therefore no dominant allele present). If the two alleles present are the same the organism is homozygous for that trait, but if the alleles are different they are heterozygous. Most characteristics are a result of multiple genes interacting, rather than a single gene. Students should be able to understand the concept of probability in predicting the results of a single gene cross, but recall that most phenotype features are the result of multiple genes rather than single gene inheritance. MS 2e Students should be able to use direct proportion and simple ratios to express the outcome of a genetic cross. MS 1c, 3a Students should be able to complete a Punnett square diagram and extract and interpret information from genetic crosses and family trees. MS 2c, 4a (HT only) Students should be able to construct a genetic cross by Punnett square diagram and use it to make predictions using the theory of probability.
AQA new specification-How plants use glucose-B8.3
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-How plants use glucose-B8.3

(2)
How plants use glucose lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video’s, practice questions, peer assessment worksheet and mini review. *Top paper friendly tip: the information in the ‘How to use glucose’ worksheet can also be found in the textbook therefore isn’t required to be printed.* NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.4.1.3 Relevant chapter: B8 Photosynthesis. AQA Biology third edition textbook-Page 128-129 Students are required to know the following; The glucose produced in photosynthesis may be: •• used for respiration •• converted into insoluble starch for storage •• used to produce fat or oil for storage •• used to produce cellulose, which strengthens the cell wall •• used to produce amino acids for protein synthesis. To produce proteins, plants also use nitrate ions that are absorbed from the soil. AT 8-Tests to identify starch, glucose and proteins using simple qualitative reagents
AQA new specification-Ethics of genetic technologies-B13.5
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Ethics of genetic technologies-B13.5

(1)
Genetic engineering lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.2.4 Relevant chapter: B13 Variation and evolution. AQA Biology trilogy edition textbook-Page 186-187. Students are required to know the following; Students should be able to explain the potential benefits and risks of genetic engineering in agriculture and in medicine and that some people have objections. Concerns about GM crops include the effect on populations of wild flowers and insects. Some people feel the effects of eating GM crops on human health have not been fully explored.
AQA new specification-Classification-B14.5
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Classification-B14.5

(0)
Classification lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.4 Relevant chapter: B14 Genetics and evolution. AQA combined trilogy edition textbook-Page 198-199 Students are required to know the following; Traditionally living things have been classified into groups depending on their structure and characteristics in a system developed by Carl Linnaeus. Linnaeus classified living things into kingdom, phylum, class, order, family, genus and species. Organisms are named by the binomial system of genus and species. Students should be able to use information given to show understanding of the Linnaean system. Students should be able to describe the impact of developments in biology on classification systems.
AQA new specification-Diet, exercise and disease-B7.4
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Diet, exercise and disease-B7.4

(2)
Diet, exercise and disease lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video's, worksheet and mini review. NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.2.2.6 Relevant chapter: B7 Non-communicable diseases. AQA Biology combined textbook-Page 104-105 Students are required to know the following; • discuss the human and financial cost of these non-communicable diseases to an individual, a local community, a nation, or globally • explain the effect of lifestyle factors including diet, alcohol, and smoking on the incidence of non-communicable diseases at local, national, and global levels. Risk factors are linked to an increased rate of a disease. They can be: • aspects of a person’s lifestyle • substances in the person’s body or environment. A causal mechanism has been proven for some risk factors, but not in others. • The effects of diet and exercise on cardiovascular disease. • Obesity as a risk factor for Type 2 diabetes. Many diseases are caused by the interaction of a number of factors. Students should be able to understand the principles of sampling as applied to scientific data in terms of risk factors. Students should be able to translate information between graphical and numerical forms; and extract and interpret information from charts, graphs and tables in terms of risk factors. Students should be able to use a scatter diagram to identify a correlation between two variables in terms of risk factors.
AQA new specification-B10 The human nervous system-Combined/Additional science bundle
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-B10 The human nervous system-Combined/Additional science bundle

4 Resources
This bundle only contains the content for COMBINED/ADDITIONAL science students. It includes the B10 unit-The human nervous system. All lessons have been done in accordance to the specification requirements and have been pitched to a higher ability class. Videos have been embedded for ease of use, and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 25% by purchasing this bundle :) Total = 4 lessons These lessons are suitable to teach separate science but they have 3 extra topics to learn. Lesson 1-Principles of homeostasis Lesson 2-The structure and function of the human nervous system Lesson 3-RP 6/7-Reaction time Lesson 4-Reflex actions Good luck with your lessons :)
AQA new specification-B15 Genetics and evolution-Separate science bundle
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-B15 Genetics and evolution-Separate science bundle

10 Resources
This bundle contains the content for SEPARATE science students. It includes the B15 unit-Genetics and evolution. All lessons have been done in accordance to the specification requirements and have been pitched to a higher ability class. Videos have been embedded for ease of use, and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 30% by purchasing this bundle :) Total = 10 lessons Lesson 1-History of genetics Lesson 2-Theories of evolution Lesson 3-Accepting Darwin’s ideas Lesson 4-Evolution and speciation Lesson 5-Evidence for evolution Lesson 6-Fossils and extinction Lesson 7-More about extinction Lesson 8-Antibiotic resistant bacteria Lesson 9-Classification Lesson 10-New systems of classification Good luck with your lessons :)
AQA new specification-The human Kidney-B12.3
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-The human Kidney-B12.3

(4)
The human Kidney lesson created in accordance to the NEW AQA Specification (9-1) for my separates class (Year 10-KS4). This is a printer friendly resource it includes an: embedded video, slide animations and a mini exam question. As i taught this lesson in two parts it's only fair i upload the other presentation also (2 for the price of 1). **Knowledge of other parts of the urinary system, the structure of the kidney, and the structure of a nephron is not required.** AQA spec link: 5.3.3 Relevant chapter: B12-Homeostasis in action. ( Note: This topic is for BIOLOGY only not for combined science students). AQA Biology third edition textbook-Page 185-186 *The new specification requires students to know the following; Students should be able to describe the function of kidneys in maintaining the water balance of the body. The kidneys produce urine by filtration of the blood and selective reabsorption of useful substances such as glucose, some ions, And water. Knowledge of other parts of the urinary system, the structure of the kidney, and the structure of a nephron is not required. Students should be able to translate tables and bar charts of glucose, ions, and urea before and after filtration. Students should be able to describe the effect of ADH on the permeability of the kidney tubules. The water level in the body is controlled by the hormone ADH which acts on the kidney tubules. ADH is released by the pituitary gland when the blood is too concentrated and it causes more water to be reabsorbed back into the blood from the kidney tubules. This is controlled by negative feedback.
AQA new specification-Theories of evolution-B15.2
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Theories of evolution-B15.2

(0)
Theories of evolution lesson created in accordance to the NEW AQA Specification (9-1). Designed for a separates class. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.3.1 Relevant chapter: B15 Genetics and evolution. AQA Biology trilogy edition textbook-Page 236-237 Students are required to know the following; Charles Darwin, largely as a result of observations on a round the world expedition, linked to developing knowledge of geology and fossils, proposed the theory of natural selection: • Individual organisms within a particular species show a wide range of variation for a characteristic. • Individuals with characteristics most suited to the environment are more likely to survive to breed successfully. • The characteristics that have enabled these individuals to survive are then passed on to the next generation. Other theories, including that of Jean-Baptiste Lamarck, are based mainly on the idea that changes that occur in an organism during its lifetime can be inherited. We now know that in the vast majority of cases this type of inheritance cannot occur. A study of creationism is not required.
AQA new specification-Types of reproduction-B13.1
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Types of reproduction-B13.1

(3)
Types of reproduction lesson created in accordance to the NEW AQA Specification (9-1). Designed for a separates class, although content can be adjusted to suit any ability. Includes: slide animations, embedded videos and practice questions with answers on slides as well as a quiz. AQA spec link: 6.1.1 Relevant chapter: B13 Genetics and reproduction. AQA Biology third edition textbook-Page 196-197. Specification requires students to know the following; Students should understand that meiosis leads to non-identical cells being formed while mitosis leads to identical cells being formed. Sexual reproduction involves the joining (fusion) of male and female gametes: • sperm and egg cells in animals • pollen and egg cells in flowering plants. In sexual reproduction there is mixing of genetic information which leads to variety in the offspring. The formation of gametes involves meiosis. Asexual reproduction involves only one parent and no fusion of gametes. There is no mixing of genetic information. This leads to genetically identical offspring (clones). Only mitosis is involved. Biology only-6.1.3 Advantages of sexual reproduction: • produces variation in the offspring • if the environment changes variation gives a survival advantage by natural selection • natural selection can be speeded up by humans in selective breeding to increase food production. Advantages of asexual reproduction: • only one parent needed • more time and energy efficient as do not need to find a mate • faster than sexual reproduction • many identical offspring can be produced when conditions are favourable Good luck with your lesson!
AQA new specification-Genetic engineering B13.4
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Genetic engineering B13.4

(1)
Genetic engineering lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. AQA spec link: 4.6.2.4 Relevant chapter: B13 Variation and evolution. AQA Biology trilogy edition textbook-Page 184-185. Students are required to know the following; Students should be able to describe genetic engineering as a process which involves modifying the genome of an organism by introducing a gene from another organism to give a desired characteristic. Plant crops have been genetically engineered to be resistant to diseases or to produce bigger better fruits. Bacterial cells have been genetically engineered to produce useful substances such as human insulin to treat diabetes. Students should be able to explain the potential benefits and risks of genetic engineering in agriculture and in medicine and that some people have objections. In genetic engineering, genes from the chromosomes of humans and other organisms can be ‘cut out’ and transferred to cells of other organisms. Crops that have had their genes modified in this way are called genetically modified (GM) crops. GM crops include ones that are resistant to insect attack or to herbicides. GM crops generally show increased yields. Concerns about GM crops include the effect on populations of wild flowers and insects. Some people feel the effects of eating GM crops on human health have not been fully explored. Modern medical research is exploring the possibility of genetic modification to overcome some inherited disorders. (HT) Students should be able to describe the main steps in the process of genetic engineering. In genetic engineering: • enzymes are used to isolate the required gene; this gene is inserted into a vector, usually a bacterial plasmid or a virus • the vector is used to insert the gene into the required cells • genes are transferred to the cells of animals, plants, or microorganisms at an early stage (egg or embryo) in their development so that they develop with desired characteristics.
AQA new specification-Hormones and the menstrual cycle-B11.6
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Hormones and the menstrual cycle-B11.6

(1)
Hormones and menstrual cycle lesson created in accordance to the NEW AQA Specification (9-1) for my separates class (Year 10-KS4). Includes: slide animations, embedded video, worksheet and practice questions with mark scheme. This resource is suitable for combined science students. *Note-For higher tier only* AQA spec link:5.3.4 Relevant chapter: B11 -Hormonal coordination . AQA Biology third edition textbook-Page 170-171. *The new specification requires students to know the following; Students should be able to explain the interactions of FSH, oestrogen, LH and progesterone, in the control of the menstrual cycle. Students should be able to extract and interpret data from graphs showing hormone levels during the menstrual cycle.
AQA new specification-Exchanging materials-B1.10
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Exchanging materials-B1.10

(2)
Exchanging materials lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability separates class, although content can be adjusted to suit any ability. Includes: slide animations, practice questions with answers on slides, worksheet, and homework (with MS) AQA spec link: 4.1.3.1 Relevant chapter: B1 Cell structure and transport. AQA Biology third edition textbook-Page 22-23 Specification requires students to know the following; A single-celled organism has a relatively large surface area to volume ratio. This allows sufficient transport of molecules into and out of the cell to meet the needs of the organism. Students should be able to calculate and compare surface area to volume ratios. Students should be able to explain the need for exchange surfaces and a transport system in multicellular organisms in terms of surface area to volume ratio. Students should be able to explain how the small intestine and lungs in mammals, gills in fish, and the roots and leaves in plants, are adapted for exchanging materials. In multicellular organisms, surfaces and organ systems are specialised for exchanging materials. This is to allow sufficient molecules to be transported into and out of cells for the organism’s needs. The effectiveness of an exchange surface is increased by: •• having a large surface area •• a membrane that is thin, to provide a short diffusion path •• (in animals) having an efficient blood supply •• (in animals, for gaseous exchange) being ventilated.
AQA new specification-B17 Organising an ecosystem-Separate science bundle
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-B17 Organising an ecosystem-Separate science bundle

5 Resources
This bundle only contains the content for separate science students. It includes the B17 unit-Organising an ecosystem. All lessons have been done in accordance to the specification requirements and have been pitched to a higher ability class. Videos have been embedded for ease of use, and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 25% by purchasing this bundle :) Total = 5 lessons Lesson 1-Feeding relationships Lesson 2-Material cycling Lesson 3-The carbon cycle Lesson 4-Rates of dec omposition Lesson 5-Required practical-Decay Good luck with your lessons :)
AQA new specification-Growing bacteria in the lab-B5.3
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Growing bacteria in the lab-B5.3

(0)
NB: This is a BIOLOGY (SEPARATES) ONLY lesson Growing bacteria in the lab lesson created in accordance to the NEW AQA Specification (9-1). Includes: slide animations, embedded videos, differentiated questions and answers have also been included within the slides. This resource is NOT suitable for combined science students. AQA spec link: 4.1.1.6 Relevant chapter: B5-Communicable diseases . AQA Biology third edition textbook-Page 78-79. Bacteria multiply by simple cell division (binary fission) as often as once every 20 minutes if they have enough nutrients and a suitable temperature. Bacteria can be grown in a nutrient broth solution or as colonies on an agar gel plate. Uncontaminated cultures of microorganisms are required for investigating the action of disinfectants and antibiotics. Students should be able to describe how to prepare an uncontaminated culture using aseptic technique. They should be able to explain why: • Petri dishes and culture media must be sterilised before use to kill unwanted microorganisms • inoculating loops used to transfer microorganisms to the media must be sterilised by passing them through a flame • the lid of the Petri dish should be secured with adhesive tape to prevent microorganisms from the air contaminating the culture, and stored upside down • in school and college laboratories, cultures should be incubated at a maximum temperature of 25 °C.
AQA new specification-REQUIRED PRACTICAL 6-Photosynthesis-B8.2
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-REQUIRED PRACTICAL 6-Photosynthesis-B8.2

(1)
Photosynthesis required practical (RP 6). This practical was completed in one lesson, students were asked to construct a graph from their data for homework. AQA spec link: 4.4.1.1 Relevant chapter: B8 Photosynthesis. AQA Biology third edition textbook-Page 126-127 Students are required to know the following; investigate the effect of light intensity on the rate of photosynthesis using an aquatic organism such as pondweed. AT skills covered by this practical activity: AT 1, 2, 3, 4 and 5.
AQA new specification-Principles of homeostasis-B10.1
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Principles of homeostasis-B10.1

(1)
Principles of homeostasis lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video’s, worksheet and mini review. NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.5.1 Relevant chapter: B10 The human nervous system. AQA Biology combined edition textbook-Page 133-134 Students are required to know the following; Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Homeostasis maintains optimal conditions for enzyme action and all cell functions. In the human body, these include control of: • blood glucose concentration • body temperature • water levels. These automatic control systems may involve nervous responses or chemical responses. All control systems include: • cells called receptors, which detect stimuli (changes in theenvironment) • coordination centres (such as the brain, spinal cord and pancreas) that receive and process information from receptors • effectors, muscles or glands, which bring about responses which restore optimum levels.
Muscles-KS3-Suitable for activate SOW
PaperfriendlyresourcesPaperfriendlyresources

Muscles-KS3-Suitable for activate SOW

(0)
Complete lesson on Muscles , suitable for a mixed ability KS3 class. Suitable to use as part of the ‘Activate’ schemes of work. Resources can be adjusted to meet the needs of your class. Enjoy for FREE For further enquiries please email paperfriendlyresources@gmail.com Also available via instagram: Paperfriendlyresourcesuk