Paperfriendlyresourcesuk
New Resources Coming soon!
PFR resources have been designed to ensure good quality teaching is not compromised by printing restrictions or buffering videos. Lessons that include worksheets have been created for teachers to print at least two copies to an A4 sheet.
Paperfriendlyresourcesuk
New Resources Coming soon!
PFR resources have been designed to ensure good quality teaching is not compromised by printing restrictions or buffering videos. Lessons that include worksheets have been created for teachers to print at least two copies to an A4 sheet.
This lesson has been created in accordance to the NEW AQA Specification (9-1) for my combined/additional science class (Year 9-KS4). Includes: slide animations, embedded video, worksheet and answers have also been included within the slides. This resource is suitable for separate science students.
AQA spec link: 4.3.1.4 and 4.3.1.5
Relevant chapter: B5-Communicable diseases . AQA Biology third edition textbook-Page 88-89.
*The new specification requires students to know the following;
Rose black spot is a fungal disease where purple or black spots develop on leaves, which often turn yellow and drop early. It affects the growth of the plant as photosynthesis is reduced. It is spread in the environment by water or wind. Rose black spot can be treated by using fungicides and/or removing and destroying the affected leaves.
The pathogens that cause malaria are protists. The malarial protist has a life cycle that includes the mosquito. Malaria causes recurrent episodes of fever and can be fatal. The spread of malaria is controlled by preventing the vectors, mosquitos, from breeding and by using mosquito nets to avoid
being bitten.
Chemical properties-2-Oxidation and Reduction lesson created in accordance to the Pearsons BTEC national specification for applied science. The specification mentions a lot of chemical properties so i have separated into three lessons.
In this second lesson i have covered oxidation, reduction and variable oxidation states of transition metal ions.
This new specification requires students to sit an externally assessed examination in January. Includes slide animations and practice questions with answers on slides.
Relevant chapter: Principles and applications of science. Pearson Applied science (Student 1) textbook-Page 30-33
Adult cell cloning lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability separates class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes.
NB: This lesson is for SEPARATE science ONLY
AQA spec link: 4.6.2.5
Relevant chapter: B14 Variation and evolution. AQA Biology third edition textbook-Page 228-229.
Students are required to know the following;
Adult cell cloning: • The nucleus is removed from an unfertilised egg cell. • The nucleus from an adult body cell, such as a skin cell, is inserted into the egg cell. • An electric shock stimulates the egg cell to divide to form an embryo. • These embryo cells contain the same genetic information as the adult skin cell. • When the embryo has developed into a ball of cells, it is inserted into the womb of an adult female to continue its development.
WS 1.3, 1.4 Explain the potential benefits and risks of cloning in agriculture and in medicine and that some people have ethical objections. There are links with this content to Advantages and disadvantages of sexual and asexual reproduction (biology only) and Selective breeding.
AQA A-Level New specification-Structure of the cell surface membrane-Transport 4.1 (3.2.3)
Enough content for a double lesson.
Includes: questions, embedded videos, slide timers, slide animations, interactive answers on slides, and a plenary.
Also includes a 3D model making activity (to be printed on card paper)
ALevel Biology Textbook: Section 2 Cells, Chapter 4.1
The best of both worlds lesson created in accordance to the NEW AQA Specification (9-1). Designed for a separates class, although content can be adjusted to suit any ability. Includes: slide animations, embedded timers, practice questions with answers on slides, quiz and 6 mark past paper question with ms. This topic is synoptic and relates to other sections where more detail is given.
AQA spec link: 6.1.3
Relevant chapter: B13 Genetics and reproduction. AQA Biology third edition textbook-Page 200-201.
Specification requires students to know the following;
Some organisms reproduce by both methods depending on the circumstances.
• Malarial parasites reproduce asexually in the human host, but sexually in the mosquito.
• Many fungi reproduce asexually by spores but also reproduce sexually to give variation.
• Many plants produce seeds sexually, but also reproduce asexually by runners such as strawberry plants, or bulb division such as daffodils.
Knowledge of reproduction in organisms is restricted to those mentioned, but students are expected to be able to explain the advantages and disadvantages for any organism if given
appropriate information.
This bundle only contains the content for COMBINED/ADDITIONAL science students. It includes the B17 unit-Biodiversity and ecosystems. All lessons have been done in accordance to the specification requirements and have been pitched to a higher ability class. Videos have been embedded for ease of use, and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 20% by purchasing this bundle :) Total = 6 lessons
These lessons are suitable to teach separate science.
Lesson 1-The human population explosion
Lesson 2-Land and water pollution
Lesson 3-Air pollution
Lesson 4-Deforestation and peat destruction
Lesson 5-Global warming
Lesson 6-Maintaining biodiversity
Good luck with your lessons :)
DNA structure and protein synthesis lessons created in accordance to the NEW AQA Specification (9-1). NB: BIOLOGY ONLY. I taught this topic in two lessons as it's a topic that's a difficult concept and can be taught effectively as opposed to being rushed. This resource is designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheets and an interactive quiz.
AQA spec link: 6.1.5
Relevant chapter: B13 Genetics and reproduction. AQA Biology third edition textbook-Page 204-205.
Students should be able to describe DNA as a polymer made from four different nucleotides. Each nucleotide consists of a common sugar and phosphate group with one of four different bases attached to the sugar. DNA contains four bases, A, C, G and T. A sequence of three bases is the code for a particular amino acid. The order of bases controls the order in which amino acids are assembled to
produce a particular protein.
The long strands of DNA consist of alternating sugar and phosphate sections. Attached to each sugar is one of the four bases. The DNA polymer is made up of repeating nucleotide units.
(HT only) Students should be able to: •• recall a simple description of protein synthesis •• explain simply how the structure of DNA affects the protein made •• describe how genetic variants may influence phenotype: a) in coding DNA by altering the activity of a protein: and b) in non-coding DNA by
altering how genes are expressed.
(HT only) In the complementary strands a C is always linked to a G on the opposite strand and a T to an A.
(HT only) Students are not expected to know or understand the structure of mRNA, tRNA, or the detailed structure of amino acids or proteins.
(HT only) Students should be able to explain how a change in DNA structure may result in a change in the protein synthesised by a gene.
(HT only) Proteins are synthesised on ribosomes, according to atemplate. Carrier molecules bring specific amino acids to add to the growing protein chain in the correct order.
(HT only) When the protein chain is complete it folds up to form a unique shape. This unique shape enables the proteins to do their job as enzymes, hormones or forming structures in the body such as collagen.
Antibiotic resistant bacteria lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes.
AQA spec link: 4.6.3.7
Relevant chapter: B15 Genetics and evolution. AQA Biology Third edition textbook-Page 248-249
Students are required to know the following;
Bacteria can evolve rapidly because they reproduce at a fast rate.
Mutations of bacterial pathogens produce new strains. Some strains might be resistant to antibiotics, and so are not killed. They survive and reproduce, so the population of the resistant strain rises. The resistant strain will then spread because people are not immune to it and there is
no effective treatment.
MRSA is resistant to antibiotics.
To reduce the rate of development of antibiotic resistant strains:
• doctors should not prescribe antibiotics inappropriately, such as
treating non-serious or viral infections
• patients should complete their course of antibiotics so all bacteria are
killed and none survive to mutate and form resistant strains
•the agricultural use of antibiotics should be restricted.
The development of new antibiotics is costly and slow. It is unlikely to keep up with the emergence of new resistant strains.
DNA and the genome lesson created in accordance to the NEW AQA Specification (9-1). Designed for a separates class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides and an interactive quiz.
AQA spec link: 6.1.4
Relevant chapter: B13 Genetics and reproduction. AQA Biology third edition textbook-Page 202-203.
Specification requires students to know the following;
Students should be able to describe the structure of DNA and define genome. The genetic material in the nucleus of a cell is composed of a chemical called DNA. DNA is a polymer made up of two strands forming a double helix. The DNA is contained in structures called chromosomes.
A gene is a small section of DNA on a chromosome. Each gene codes for a particular sequence of amino acids, to make a specific protein. The genome of an organism is the entire genetic material of that organism. The whole human genome has now been studied and this will have great importance for medicine in the future.
Students should be able to discuss the importance of understanding the human genome.
This is limited to the:
• search for genes linked to different types of disease
• understanding and treatment of inherited disorders
• use in tracing human migration patterns from the past.
Fossils and extinction lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes.
AQA spec link: 4.6.3.5
Relevant chapter: B15 Genetics and evolution. AQA Biology third edition textbook-Page 224-245
Students are required to know the following;
Fossils are the ‘remains’ of organisms from millions of years ago, which
are found in rocks. Fossils may be formed:
• from parts of organisms that have not decayed because one or more
of the conditions needed for decay are absent
• when parts of the organism are replaced by minerals as they decay
•as preserved traces of organisms, such as footprints, burrows and
rootlet traces.
Many early forms of life were soft-bodied, which means that they
have left few traces behind. What traces there were have been mainly
destroyed by geological activity. This is why scientists cannot be certain about how life began on Earth.
WS 1.3 Appreciate why the fossil record is incomplete.
Please note that I have merged the content of two lessons into one resource.
Trophic levels and biomass transfers lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. This lesson Includes powerpoint timers, slide animations, past paper questions, self-assessment, interactive mark scheme, embedded videos and review.
For general enquiries or support please email: Paperfriendlyresources@gmail.com
NB: If you are unable to play embedded videos please view slide notes for link. *
AQA spec link: 4.7.4; 1, 2, 3
Relevant chapter: B18 Biodiversity and ecosystems. AQA Biology third edition textbook-Page 300-301
Students are required to know the following;
7.4.1 Students should be able to describe the differences between the trophic levels of organisms within an ecosystem.
Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently according to how far the organism is along the food chain.
Level 1: Plants and algae make their own food and are called producers.
Level 2: Herbivores eat plants/algae and are called primary consumers.
Level 3: Carnivores that eat herbivores are called secondary consumers.
Level 4: Carnivores that eat other carnivores are called tertiary consumers. Apex predators are carnivores with no predators.
Decomposers break down dead plant and animal matter by secreting enzymes into the environment. Small soluble food molecules then diffuse into the microorganism.
7.4.2 Pyramids of biomass can be constructed to represent the relative amount of biomass in each level of a food chain.
Trophic level 1 is at the bottom of the pyramid.
Students should be able to construct accurate pyramids of biomass from appropriate data.
7.4.3 Students should be able to: • describe pyramids of biomass • explain how biomass is lost between the different trophic levels.
Producers are mostly plants and algae which transfer about 1% of the incident energy from light for photosynthesis.
Only approximately 10% of the biomass from each trophic level is transferred to the level above it.
Losses of biomass are due to:
• not all the ingested material is absorbed, some is egested as faeces
• some absorbed material is lost as waste, such as carbon dioxide and water in respiration and water and urea in urine.
Large amounts of glucose are used in respiration.
Students should be able to calculate the efficiency of biomass transfers between trophic levels by percentages or fractions of mass.
Students should be able to explain how this affects the number of organisms at each trophic level.
Factors affecting transpiration lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability.Includes powerpoint timers, slide animations, embedded video’s and mini review. NB: If you are unable to play embedded videos please view slide notes for link.
AQA spec link: 4.2.3.2
Relevant chapter: B4 Organising animals and plants. AQA Biology combined/third edition textbook-Page 68-69
Students are required to know the following;
Students should be able to explain the effect of changing temperature, humidity, air movement and light intensity on the rate of transpiration.
•plot and draw appropriate graphs, selecting appropriate scales for axes
Genetic engineering lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes.
AQA spec link: 4.6.2.4
Relevant chapter: B13 Variation and evolution. AQA Biology trilogy edition textbook-Page 184-185.
Students are required to know the following;
Students should be able to describe genetic engineering as a process which involves modifying the genome of an organism by introducing a gene from another organism to give a desired characteristic.
Plant crops have been genetically engineered to be resistant to diseases or to produce bigger better fruits.
Bacterial cells have been genetically engineered to produce useful substances such as human insulin to treat diabetes.
Students should be able to explain the potential benefits and risks of genetic engineering in agriculture and in medicine and that
some people have objections.
In genetic engineering, genes from the chromosomes of humans and other organisms can be ‘cut out’ and transferred to cells of
other organisms. Crops that have had their genes modified in this way are called
genetically modified (GM) crops. GM crops include ones that are resistant to insect attack or to herbicides. GM crops generally show increased yields.
Concerns about GM crops include the effect on populations of wild flowers and insects. Some people feel the effects of eating GM crops
on human health have not been fully explored.
Modern medical research is exploring the possibility of genetic modification to overcome some inherited disorders.
(HT) Students should be able to describe the main steps in the process of genetic engineering.
In genetic engineering:
• enzymes are used to isolate the required gene; this gene is inserted into a vector, usually a bacterial plasmid or a virus
• the vector is used to insert the gene into the
required cells
• genes are transferred to the cells of animals, plants, or microorganisms at an early stage (egg or embryo) in their development so that they develop with desired characteristics.
B10 and B11 revision pack created for biology separates. It includes a series of practice paper questions and a mark scheme, I've tried to include a question from each topic. Total marks out of 33. Perfect to set over the half term, or for a quick progress check at the end of the topic (formative assessment).
This bundle includes all the resources required to teach unit 2D for the new Pearson BTEC applied science specification.
Learning aim D: Review personal development of scientific skills for laboratory work
All lessons have been created in accordance to the specification requirements. Videos have been embedded for ease of use and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 22% by purchasing this bundle.
Lesson 1-Personal responsibility
Lesson 2-Interpersonal skills
Lesson 3-Professional practice
Assignment template
Photosynthesis required practical (RP 6). This practical was completed in one lesson, students were asked to construct a graph from their data for homework.
AQA spec link: 4.4.1.1
Relevant chapter: B8 Photosynthesis. AQA Biology third edition textbook-Page 126-127
Students are required to know the following;
investigate the effect of light intensity on the rate of photosynthesis using an aquatic organism such as pondweed.
AT skills covered by this practical activity: AT 1, 2, 3, 4 and 5.
The role of negative feedback lesson created in accordance to the NEW AQA Specification (9-1) for my separates class (Year 10-KS4). This content is for HIGHER TIER only. Includes: slide animations, embedded video, practice exam question with mark scheme. This resource is suitable for combined science students. May needed to be edited for foundation students.
AQA spec link: 5.3.7
Relevant chapter: B11 Hormonal coordination. AQA Biology third edition textbook-Page 166-167.
Specification requires students to know the following;
Students should be able to explain the roles of thyroxine and adrenaline in the body. Adrenaline is produced by the adrenal glands in times of fear or stress. It increases the heart rate and boosts the
delivery of oxygen and glucose to the brain and muscles, preparing the body for ‘flight or fight’.
Thyroxine from the thyroid gland stimulates the basal metabolic rate. It plays an important role in growth and development. Thyroxine levels are controlled by negative feedback.
Complete lesson
Includes: embedded videos, slide timers, slide animations, interactive answers on slides, and a plenary
3.2.1.1 In complex multicellular organisms, eukaryotic cells become
specialised for specific functions. Specialised cells are organised
into tissues, tissues into organs and organs into systems.
Making the most of photosynthesis lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class and HIGHER TIER ONLY students. You will require access to computers/tablets for this lesson as it is heavily research based.
You may decide to set this part of the spec as homework although my students thoroughly enjoyed designing the most affordable greenhouse. * NB: If you are unable to play embedded videos please view slide notes for link. Enjoy this lesson for free as a token of appreciation for all the hard work you've done this term :)
AQA spec link: 4.4.1.2
Relevant chapter: B8 Photosynthesis. AQA Biology third edition textbook-Page 128-129
Students are required to know the following;
Limiting factors are important in the economics of enhancing the conditions in greenhouses to gain the maximum rate of photosynthesis whilst still maintaining profit.