Hero image

Teach Science & Beyond

Average Rating4.88
(based on 24 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

121k+Views

79k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Introduction to Amines
TeachScienceBeyondTeachScienceBeyond

Introduction to Amines

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) an Introduction to Amines By the end of this lesson KS5 students should be able to: To know how to name amines using IUPAC rules To understand the basicity of amines in terms of proton acceptance by the nitrogen lone pair To understand the reactions of amines with dilute inorganic acids Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
GCSE Chemistry: Relative Formula Mass
TeachScienceBeyondTeachScienceBeyond

GCSE Chemistry: Relative Formula Mass

(0)
A well structured lesson including starter activity and mini AfL questions on relative atomic mass and relative formula mass. Suitable for AQA GCSE Chemistry and Combined Science (higher tier and foundation) The lesson begins with a short starter task (DO NOW) on understanding the numbers in the periodic table By the end of this lesson KS4 students should be able to: To identify the relative atomic mass of an element from the periodic table To be able to define the term relative atomic mass To calculate relative formula masses from atomic masses The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE Chemistry: pH and Neutralisation
TeachScienceBeyondTeachScienceBeyond

GCSE Chemistry: pH and Neutralisation

(0)
A well structured lesson including starter activity, AfL activities and main work task with answers on pH and neutralisation. Suitable for AQA GCSE Chemistry and higher tier combined science Then by the end of this lesson KS4 students should be able to: To state the ionic equation involved in neutralisation reactions To describe the use of a universal indicator to measure pH changes To compare acid strength and concentration The teacher will be able to check students have met these learning objectives through mini AfL tasks and main work tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Properties of Alcohols (AS Chemistry)
TeachScienceBeyondTeachScienceBeyond

Properties of Alcohols (AS Chemistry)

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Properties of Alcohols **By the end of this lesson KS5 students should be able: **LO1: To identify and explain the intermolecular forces that are present in alcohol molecules LO2: To explain the water solubility of alcohols, their low volatility and their trend in boiling points LO3: To classify alcohols as primary, secondary or tertiary alcohols The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
OCR Redox Titrations (Part 2)
TeachScienceBeyondTeachScienceBeyond

OCR Redox Titrations (Part 2)

(0)
A structured KS5 lesson (Part 2 of 2) including starter activity, AfL work tasks and practice questions on Redox Titrations **By the end of this lesson KS5 students should be able to: **LO1: To describe the practical techniques and procedures used to carry out redox titrations for I2/S2O32- LO2: To calculate structured titration questions based on experimental results of redox titrations involving I2/S2O32- and non familiar redox systems LO3: To calculate non-structured titration questions based on experimental results of I2/S2O32- The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Naming  Aromatic Compounds (Aromatic Chemistry)
TeachScienceBeyondTeachScienceBeyond

Naming Aromatic Compounds (Aromatic Chemistry)

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on naming and drawing aromatic compounds **By the end of this lesson KS5 students should be able to: **1. State the IUPAC name of substituted aromatic compounds **2. Construct the structure of aromatic compounds based on their IUPAC names **3. Analyse the correct numbering system for di and trisubstituted aromatic compounds The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Aromatic Compounds (OCR)
TeachScienceBeyondTeachScienceBeyond

Aromatic Compounds (OCR)

5 Resources
5 Full Lesson Bundle which covers the lessons on aromatic compounds from the OCR A Level Chemistry Specification. See below for the lesson objectives Lesson 1: Benzene and its Structure To describe the Kekulé model of benzene To describe the delocalised model of benzene in terms of P orbital overlap forming a delocalised π system To compare the Kekulé model of benzene and the delocalised model of benzene To explain the experimental evidence which supports the delocalised model of benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction Lesson 2: Naming Aromatic Compounds State the IUPAC name of substituted aromatic compounds Construct the structure of aromatic compounds based on their IUPAC names Analyse the correct numbering system for di and trisubstituted aromatic compounds Lesson 3: The Reactions of Benzene To understand the electrophilic substitution of aromatic compounds with: (i) concentrated nitric acid in the presence of concentrated sulfuric acid (ii) a halogen in the presence of a halogen carrier (iii) a haloalkane or acyl chloride in the presence of a halogen carrier (Friedel–Crafts reaction) and its importance to synthesis by formation of a C–C bond to an aromatic ring To construct the mechanism of electrophilic substitution in arenes Lesson 4: Phenols To recall and explain the electrophilic substitution reactions of phenol: with bromine to form 2,4,6-tribromophenol (ii) with dilute nitric acid to form a mixture of 2-nitrophenol and 4-nitrophenol (j) To explain the relative ease of electrophilic substitution of phenol compared with benzene, in terms of electron pair donation to the π-system from an oxygen p-orbital in phenol To understand the weak acidity of phenols shown by its neutralisation reaction with NaOH but absence of reaction with carbonates Lesson 5: Directing Groups in Aromatic Compounds To understand the 2- and 4-directing effect of electron- donating groups (OH, NH2) and the 3-directing effect of electron-withdrawing groups (NO2) in electrophilic substitution of aromatic compounds To predict the substitution products of aromatic compounds by directing effects in organic synthesis Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Redox &  Electrode Potentials (OCR A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

Redox & Electrode Potentials (OCR A Level Chemistry)

8 Resources
8 Full Lesson Bundle which covers the redox and electrode potential section of the OCR Energy Chapter: Lesson 1 & 2: Redox Reactions Lesson 3& 4: Redox Titrations Lesson 5&6: Standard Electrode & Cell Potentials Lesson 7: Limitations of Cell Potentials Lesson 8: Storage & Fuel Cells Learning Objectives: Lesson 1: LO1: To identify the oxidation numbers of elements in ions and compounds LO2: To construct half-equations from redox equations LO3: To explain and use the terms oxidising agent and reducing agent Lesson 2: LO1: To understand that the overall increase in oxidation number will equal the overall decrease in oxidation number LO2: To construct balanced half equations and overall redox equations from reactions in acidic conditions LO3: To construct balanced half equations and overall redox equations from reactions in alkaline conditions (stretch & challenge) Lesson 3: LO1: To understand what a redox titration is. LO2: To describe the practical techniques and procedures used to carry out redox titrations involving Fe2+ /MnO4- LO3: To calculate structured titration questions based on experimental results of redox titrations involving Fe2+ /MnO4- and its derivatives Lesson 4: LO1: To describe the practical techniques and procedures used to carry out redox titrations for I2/S2O32- LO2: To calculate structured titration questions based on experimental results of redox titrations involving I2/S2O32- and non familiar redox systems LO3: To calculate non-structured titration questions based on experimental results of I2/S2O32- Lesson 5: LO1: To describe techniques and procedures used for the measurement of : i) Cell potentials of metals or non-metals in contact with their ions in aqueous solution ii) Ions of the same element in different oxidation states in contact with a Pt electrode Lesson 6: LO1: To use the term standard electrode potential E⦵ including its measurement using a hydrogen electrode LO2: To calculate a standard cell potential by combining two standard electrode potentials LO3: To predict the feasibility of electrode potentials to modern storage cells Lesson 7: LO1. To understand the limitations of predicting the feasibility of a reaction using cell potentials due to kinetics and non-standard conditions LO2. To explain why electrochemical cells may not work based on the limitations of using cell potentials Lesson 8: LO1: To understand the application of the principles of electrode potentials to modern storage cells LO2: To explain that a fuel cell uses the energy from a reaction of a fuel with oxygen to produce a voltage LO3: To derive the reactions that take place at each electrode in a hydrogen fuel cell The teacher will be able to check students have met these learning objectives through starter activities, discussion questions, mini AfL tasks and practice questions for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
The Equilibrium Constant Kp
TeachScienceBeyondTeachScienceBeyond

The Equilibrium Constant Kp

(1)
A structured KS5 lesson including starter activity, AfL work tasks, main work tasks with answers on The Equilibrium Constant Kp By the end of the lesson students should be able to: To use the terms mole fraction and partial pressure To construct expressions for Kp for homogeneous and heterogeneous equilibria To calculate Kp including determination of units To understand the affect of temperature, pressure, concentration and catalysts on Kp and controlling the position of equilibrium Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Proton NMR Spectroscopy (Part 2)
TeachScienceBeyondTeachScienceBeyond

Proton NMR Spectroscopy (Part 2)

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on proton NMR Spectroscopy (part 2) NOTE: This lesson can be purchased as a bundle with proton NMR Spectroscopy (part 1) By the end of this lesson KS5 students should be able to: To analyse proton NMR spectra of an organic molecule to make predictions about: The different types of proton environment present from chemical shift values The relative numbers of each type of proton present from the relative peak areas using integration traces or ratio numbers when required The number of non-equivalent protons adjacent to a given proton from the spin-spin splitting pattern, using the n+1 rule Possible structures for the molecule 2 Bonus Questions on Combined Techniques are also included in this lesson! Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: Naming Organic Compounds
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Naming Organic Compounds

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on naming organic compounds By the end of the lesson students should be able to: Know the IUPAC rules for naming alkanes and alkenes Know the IUPAC rules for naming aldehyde, ketones and carboxylic acids Construct structural or displayed formulae from named organic compounds and name organic compounds from the structural or displayed formulae Students will be able to take rich notes on naming organic compounds, building on their KS4 knowledge on this topic The teacher will be able to quickly assess students’ understanding of the how to name organic compounds by carrying our mini AfL tasks either on mini white boards or in students’ books Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Transition Metals & Their Compounds
TeachScienceBeyondTeachScienceBeyond

Transition Metals & Their Compounds

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks and plenary quiz on Transition Metals & Their Compounds. All answers included **By the end of this lesson KS5 students should be able to: To know the electron configuration of atoms and ions of the d-block elements of Period 4 (Sc–Zn), given the atomic number and charge 2.To understand the elements Ti–Cu as transition elements To illustrate, using at least two transition elements, of: (i) the existence of more than one oxidation state for each element in its compounds (ii) the formation of coloured ions (iii) the catalytic behaviour of the elements and their compounds and their importance in the manufacture of chemicals by industry The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Chromatography
TeachScienceBeyondTeachScienceBeyond

Chromatography

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on chromatography **By the end of the lesson, students should be able to: To interpret one-way TLC chromatograms in terms of Rf values To interpret gas chromatograms in terms of: (i) retention times (ii)  the amounts and proportions of the components in a mixture To understand the creation and use of external calibration curves to confirm concentrations of components. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Disproportionation & The Uses of Chlorine
TeachScienceBeyondTeachScienceBeyond

Disproportionation & The Uses of Chlorine

(0)
A structured KS5 lesson including starter activity, and main work tasks all with answers on Disproportionation & The Uses of Chlorine By the end of this lesson KS5 students should be able to: To explain the term disproportionation To explain how the reaction of chlorine with water or cold dilute sodium hydroxide are examples of disproportionation reactions To evaluate the uses of chlorine (How Science Works) All tasks have worked out answers, which will allow students to self assess their work during the lesson For the 3rd learning objective, students will have an opportunity to explore the uses of chlorine beyond the curriculum by completing a group research task based on the following OCR specification point: HSW9,10,12 Decisions on whether or not to chlorinate water depend on balance of benefits and risks, and ethical considerations of people’s right to choose. Consideration of other methods of purifying drinking water. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Transition Metals & Complex Ions
TeachScienceBeyondTeachScienceBeyond

Transition Metals & Complex Ions

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Transition Metals & Complex Ions **By the end of this lesson KS5 students should be able to: To explain and use the term ligand in terms of dative covalent bonding to a metal ion or metal, including bidentate ligands To use the terms complex ion and coordination number To construct examples of complexes with: (i) six-fold coordination with an octahedral shape (ii) four-fold coordination with either a planar or tetrahedral shape The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Qualitative Analysis of Organic Functional Groups
TeachScienceBeyondTeachScienceBeyond

Qualitative Analysis of Organic Functional Groups

(0)
A well structured KS5 Lesson on Qualitative Analysis of Organic Functional Groups (Year 13). The lesson contains a starter activity and main work tasks, all with answers included By the end of the lesson students should be able: To recall qualitative analysis of organic functional groups on a test-tube scale To design qualitative analysis tests to distinguish between two or more organic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Haloalkanes and the environment
TeachScienceBeyondTeachScienceBeyond

Haloalkanes and the environment

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks with answers on haloalkanes and the environment **By the end of this lesson KS5 students should be able: To know how halogen radicals are produced from chlorofluorocarbons (CFCs) by the action of UV radiation To construct equations for the production of halogen radicals from CFCs To construct equations for the catalysed breakdown of ozone by Cl. and other radicals (NO.) Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Catalysts (AS Chemistry)
TeachScienceBeyondTeachScienceBeyond

Catalysts (AS Chemistry)

(0)
A structured Year 12 KS5 lesson including starter activity and AfL work tasks on Catalysts. Suitable for OCR Specification (AS Chemistry) By the end of this lesson KS5 students should be able to: **1. To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions **2. To calculate the rate of reaction using the gradients of a concentration-time graph **3. To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Preparation of Amines
TeachScienceBeyondTeachScienceBeyond

Preparation of Amines

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on The Preparation of Amines By the end of this lesson KS5 students should be able to: To know the reaction steps involved in the preparation of aromatic amines by reduction of nitroarenes using tin and concentrated hydrochloric acid To know the reaction steps involved in the preparation of aliphatic amines by substitution of haloalkanes with excess ethanolic ammonia or amines To explain the reaction conditions that favours the formation of a primary aliphatic amine To explain the reaction conditions that favours the formation of a quaternary ammonium salt Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: Redox Equations
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Redox Equations

(1)
Lesson 3 of 3 on Redox Reactions in AS Chemistry. This lesson focuses on FORMING REDOX EQUATIONS. This lesson includes starter activity, mini AfL work tasks with answers, main work tasks with answers (NOTE: Lesson 1, 2 and 3 are available as a bundle resource). This topic is also likely to be recapped in Year 13 when students are introduced to redox reactions and electrode potentials By the end of the lesson students should be able to: Identify what substance has been reduced or oxidised in a redox reaction Construct balanced half equations by adding H+ and H2O Construct full ionic redox equations from half equations Students will be able to take rich notes on this topic The teacher will be able to quickly assess students’ understanding of forming redox equations by carrying our mini AfL tasks either on mini white boards or in students’ books Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above