Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Antibiotic resistance (CIE A-level Biology)
GJHeducationGJHeducation

Antibiotic resistance (CIE A-level Biology)

(0)
This lesson outlines how bacteria become resistant to antiobiotics and discusses its consequences and the steps taken to reduce its impact. The PowerPoint and accompanying worksheet have been designed to cover specification points 10.2 (b & c) of the CIE A-level Biology specification President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. Moving forwards, 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of the development of resistance by evolution through natural selection. The main task of the lesson challenges the students to form a description to explain how this strain of bacteria developed resistance to methicillin, making use of the five key terms emphasised above. Moving forwards, there is a focus on the hospital as the common location for MRSA infections and students will recognise that this opportunistic pathogen can infect through open wounds to cause sepsis and potentially death. Figures from infections and deaths in hospitals in the US are used to increase the relevance and students will learn how a MRSA prevention program in VHA facilities includes screening of surgery patients to try to reduce its impact. The lesson concludes with a discussion about other methods that can be used by hospitals and general practitioners to reduce the impact of MRSA and to try to prevent the development of resistance in other strains.
Topic 8: Coordination, Response and Gene Technology (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Topic 8: Coordination, Response and Gene Technology (Edexcel Int. A-level Biology)

8 Resources
This bundle contains 8 fully-resourced lessons which have been designed to cover the following content in topic 8 of the Edexcel International A-level Biology specification: 8.1: Know the structure and function of sensory, relay and motor neurones 8.2: Understand how the nervous system of organisms can cause effectors to respond to a stimulus 8.4: Understand how a nerve impulse is conducted along an axon 8.5: Understand the role of myelination in saltatory conduction 8.6 (i): Know the structure and function of synapses in nerve impulse transmission 8.6 (ii): Understand how the pupil dilates and contracts 8.8: Understand how the nervous system of organisms can detect stimuli with reference to rods in the retina of mammals 8.10: Know that the mammalian nervous system consists of the central and peripheral nervous systems 8.13: Understand how coordination in animals is brought about through nervous and hormonal control 8.18: Understand how recombinant DNA can be produced 8.19: Understand how recombinant DNA can be inserted into other cells Each of the lessons contains a wide range of activities, which include exam-style questions, guided discussion periods and quick quiz competitions, and these will motivate the students whilst the difficult A-level content is covered If you would like to see the quality of lessons included in this bundle then download the pupil reflex, saltatory conduction and nervous and hormonal control lessons as these have been uploaded for free
Farming and conservation (AQA A-level Biology)
GJHeducationGJHeducation

Farming and conservation (AQA A-level Biology)

(0)
This lesson explores how certain farming methods reduce biodiversity and considers the importance of a balance between conservation and farming. The PowerPoint and accompanying resources are the second in a series of 2 lessons which cover the detail in point 4.6 (biodiversity within a community) of the AQA A-level biology specification. The lesson begins by challenging the students to use the % change formula to calculate the predicted population in the UK by mid 2030. This increase to almost 70 million will lead into the recognition that farmers are under constant pressure to grow and provide enough food to feed this ever-growing population. A series of tasks and discussions will consider farming methods such as continuous monoculture and herbicides and insecticides which reduce biodiversity. This introduces conservation as active management to prevent the loss of biodiversity and several methods including the CSS and buffer strips are explored to encourage the students to think about the aims of these strategies. The other lesson covering specification point 4.6 is uploaded and named “biodiversity within a community”.
Paper 2 REVISION (AQA A-level biology)
GJHeducationGJHeducation

Paper 2 REVISION (AQA A-level biology)

(0)
This extensive revision lesson challenges students on their knowledge and understanding of the content of topics 5 - 8 of the AQA A-level specification. The PowerPoint and accompanying resources are detailed and engaging and contain a selection of tasks which challenge the following points: Directional, stabilising and disruptive selection Saltatory conduction and other factors affecting conductance speed The structure of a motor neurone Sensory receptors, depolarisation and initiation of an action potential Hardy-Weinberg principle Genetic terminology Codominance and sex-linkage Autosomal linkage Chi-squared test Phosphorylation The stages of aerobic respiration Explaining lower ATP yields in anaerobic respiration Skeletal muscle contraction Structure and function of slow and fast twitch muscle fibres The control of heart rate Electrophoresis and genetic fingerprinting The secondary messenger model The students are tested through a variety of tasks including exam questions, understanding checks, and quiz rounds to maintain engagement. Due to the mathematical content in all A-level exams, there is also a focus on these skills. The answers to all questions are embedded into the PowerPoint so students can use this resource outside of the classroom. The delivery of the whole lesson will likely need at least 2 or 3 hours of contact time so this resource could be used with students in the final weeks building up to their paper 2 exam, or alternatively with students before their mocks on these topics.
Anaerobic respiration - GCSE
GJHeducationGJHeducation

Anaerobic respiration - GCSE

(0)
A fully- resourced lesson which looks at the chemical reaction that is anaerobic respiration and ensures that students can understand why this form of respiration can only be used for short periods of time. The lesson includes an engaging lesson presentation (39 slides), a newspaper article and application questions. The lesson begins by challenging the students to recall information about aerobic respiration to recognise that the sole reactant of anaerobic respiration is glucose. A newspaper article about two atheletes from the 10000m race has been written to challenge the students to recognise why one of the athletes wouldnt be able to compete again in the near future whilst the other could. As a result, students will be introduced to lactic acid and will learn how this poisonous substance prevents muscle contraction and causes cramps. Time is taken to ensure that students are familiar with ATP and specifically that they recognise that a much lower yield is produced in this type of respiration. A perfect opportunity is taken to get the students to carry out a mathematical calculation to compare the yields. Oxygen debt is discussed and related back to the original newspaper article. Finally, anaerobic respiration in plants and yeast is considered in terms of fermentation and the word and symbol equation is written so that it can be compared to those from animals. There are regular progress checks throughout the lesson to allow the students to check on their understanding. The lesson has been written for GCSE students but could be used with higher ability KS3 students or A-level students who want a recap before covering the topic in greater detail on their course.
Edexcel GCSE Combined Science Topic B3 REVISION (Genetics)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic B3 REVISION (Genetics)

(0)
This is a fully-resourced REVISION lesson which challenges the students on their knowledge of the content in TOPIC B5 (Genetics) of the Edexcel GCSE Combined Science specification. The lesson uses an engaging PowerPoint (63 slides) and accompanying worksheets to motivate students whilst they assess their understanding of this topic. A range of exam questions, quick tasks and quiz competitions are used to test the following sub-topics: Recognising and using genetic terminology in context Constructing genetic diagrams to calculate offspring percentages for diseases caused by dominant and recessive alleles The sex chromosomes and sex determination Meiosis and the formation of haploid daughter cells The structure of DNA Extracting DNA from a fruit Genetic and environmental variation Mutations and their effect on the phenotype The mathematical element of the course is also tested throughout the lesson and students are given helpful hints on exam techniques and how to structure answers. This resource is suitable for use at the end of topic B3 or in the lead up to mocks or the actual GCSE exams.
Edexcel GCSE Combined Science Topic B8 REVISION (Exchange and transport in animals)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic B8 REVISION (Exchange and transport in animals)

(0)
This REVISION resource has been written with the aim of motivating the students whilst they are challenged on their knowledge of the content in Biology TOPIC 8 (Exchange and transport in animals) of the Edexcel GCSE Combined Science specification. The resource contains an engaging and detailed PowerPoint (90 slides) and accompanying worksheets, most of which are differentiated to allow all abilities to access the work. The wide range of activities, which include exam questions and quiz competitions, have been designed to cover as much of topic 8 as possible but the following sub-topics have been given a particular focus: Surface area to volume ratio Gas exchange at the alveoli The structure of the blood vessels The gross structure of the heart and the major blood vessels Calculating the cardiac output The functions of the components of the blood Aerobic vs anaerobic respiration There is a large emphasis on mathematical skills in the new specification and these are tested throughout the lesson. This resource is suitable for use at the end of topic 8, in the lead up to mocks or in the preparation for the final GCSE exams.
OCR A-level Biology 2.1.5 REVISION (Biological membranes)
GJHeducationGJHeducation

OCR A-level Biology 2.1.5 REVISION (Biological membranes)

(0)
This revision resource has been written to include a range of activities that motivate the students whilst they assess their understanding of the content found in module 2.1.5 (Biological membranes) of the OCR A-level Biology A specification. The resource includes a detailed and engaging Powerpoint (71 slides) and associated worksheets The range of activities have been designed to cover as much of the content as possible but the following sub-topics have been given particular attention: The movement of molecules by active transport which requires ATP as an immediate source of energy The movement of molecules by passive processes The use of membrane-spanning proteins in facilitated diffusion and active transport Factors that increase the rate of simple diffusion The movement of water across membranes by osmosis The effects that solutions of different water potentials can have on animal and plant cells The fluid mosaic model of membrane structure The roles of the components of the plasma cell membrane In addition to these topics, some topics from other modules such as organelles, synapses and autoimmune diseases are tested in order to challenge the students on their ability to make links between the modules. The range of activities include exam questions and understanding checks as well as quiz competitions to maintain student engagement.
Asexual reproduction
GJHeducationGJHeducation

Asexual reproduction

(0)
An engaging lesson presentation (33 slides) that looks at the key details of asexual reproduction, examines the process in bacteria and plants and also considers the advantages and disadvantages. The lesson begins by challenging the students to discuss whether reproduction always requires two (parents). Students will see how only one parent is involved in this type of reproduction and will focus on how it takes place in bacteria. Moving forwards, students will be introduced to the methods of runners, bulbs and tubers in plants. By making connections to natural selection, students will be challenged to think about the benefits of asexual reproduction. There are regular progress checks throughout the lesson so that students can assess their understanding. This lesson is suitable for both KS3 and GCSE students
Phylogeny
GJHeducationGJHeducation

Phylogeny

(2)
A concise lesson presentation (20 slides) and associated worksheet that guides students through phylogenetic trees and helps them to be able to interpret these diagrams. The lesson begins by stating three key points about the trees which will form the basis of their understanding. Moving forwards, a series of questions with explained answers are used to show how common ancestors in the past can be used to work out which present day organisms are the most closely related. Students are given lots of opportunities to assess their understanding and check that they can explain. This lesson has been written for GCSE but could be used as a recap for those students studying at A-level
Osmosis
GJHeducationGJHeducation

Osmosis

(0)
A fully-resourced lesson that looks at the topic of osmosis and how the movement of water between a cell and the solution can affect the appearance of an animal and a plant cell. This lesson includes a detailed and engaging lesson presentation (42 slides) and differentiated worksheets that include exam questions that can be set as homework. There is a lot of key terminology associated with this topic and time is taken to ensure that students understand the meaning of each of these terms before moving forwards. Students are introduced to the different types of solutions and then a step-by-step guide is used to show them how to compare the water potential of the solution and the cell and then how this will determine which was water moves. The main task is differentiated so that students are challenged and can access the work. This lesson has been designed for GCSE students (14 - 16 year olds in the UK) but is also suitable for A-level students
Non-communicable diseases
GJHeducationGJHeducation

Non-communicable diseases

(0)
An informative lesson presentation (38 slides) that looks at a range of non-communicable diseases and also explores how risk factors can increase the chances of an individual having one of these diseases. The lesson begins by looking at CHD so that students can recognise that this is a non-communicable disease and check on their understanding of this key term. Moving forwards, a step by step question and answer format is used to show students how to form a long answer. Key terminology such as thrombosis and atherosclerosis are introduced using quick quiz competitions which act to maintain the engagement. The rest of the lesson focuses on a range of risk factors for cardiovascular diseases and time is taken to deepen knowledge of the human anatomy by challenging students to link the names of arteries to the organs that they supply. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding and any misconceptions can be addressed. This lesson has been written for GCSE students (14 - 16 year olds in the UK)
Food chains and webs
GJHeducationGJHeducation

Food chains and webs

(0)
An engaging lesson which focuses on the key terms which are involved in the ecology topic of food chains and food webs. Although this lesson is primarily designed for GCSE students, the content is suitable with KS3 students who are looking at the ecological relationships between organisms. The lesson begins by ensuring that students are confident in the construction of a food chain and that any common mistakes such as the arrows pointing in the wrong direction are eliminated. As with the other ecology lessons that I have designed, “ecology bingo” runs throughout the lesson to engage the students but also to challenge their recognition of key terms from definitions. Key terms such as producers and consumers are revisited in this lesson. The students will recall the names for the three types of consumers, based on their diets, and will make the link between the positions of producers, herbivores and carnivores in food chains. The remainder of the lesson focuses on the construction of a food web and describing changes in the numbers of organisms when there is a change to one of the other populations. Progress checks have been written into the lesson at regular intervals so students can constantly assess their understanding.
Conducting tissue of the heart (AQA A-level Biology)
GJHeducationGJHeducation

Conducting tissue of the heart (AQA A-level Biology)

(0)
This engaging lesson explores the roles of the SAN, AVN, Bundle of His and Purkyne fibres in the transmission of the wave of excitation through the heart. The PowerPoint and accompanying resources have been designed to cover the first part of point 6.1.3 of the AQA A-level Biology specification which states that students should be able to describe the myogenic stimulation of the heart and the subsequent wave of electrical activity. The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from topic 3. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology
Multiple alleles and codominance (OCR A-level Biology)
GJHeducationGJHeducation

Multiple alleles and codominance (OCR A-level Biology)

(0)
This fully-resourced lesson explores the inheritance of genetic characteristics that involve multiple alleles and codominant alleles. The engaging and detailed PowerPoint and differentiated worksheets have been designed to cover the part of point 6.1.2 (b[i]) which states that students should be able to demonstrate and apply their knowledge and understanding of genetic diagrams to show patterns of inheritance including multiple and codominant alleles. The main part of the lesson uses the inheritance of the ABO blood groups to demonstrate how the three alleles that are found at the locus on chromosome 9 and the codominance of the A and B alleles affects the phenotypes. Students are guided through the construction of the different genotypes and how to interpret the resulting phenotype. They are challenged to use a partially completed pedigree tree to determine the blood group for some of the family members and to explain how they came to their answer. To further challenge their ability to apply their knowledge, a series of questions about multiple alleles and codominance in animals that are not humans are used. The final part of the lesson makes a link back to module 4 and the correlation between a high proportion of polymorphic gene loci and an increase in genetic diversity. Students will be expected to make links between module 4 and 6 as part of papers 2 and 3, so this demonstrates how exam questions can do just that
Topic B6.1: Monitoring and maintaining the environment (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic B6.1: Monitoring and maintaining the environment (OCR Gateway A GCSE Combined Science)

3 Resources
This bundle of 3 lessons covers all of the content in the sub-topic B6.1 (Monitoring and maintaining the environment) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include: Be able to explain how to carry out a field investigation into the distribution and abundance of organisms Be able to estimate population numbers in a given area Describe both positive and negative human interactions within an ecosystem Explain human impacts on biodiversity The benefits and challenges of maintaining local and global biodiversity All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Edexcel GCSE Biology Paper 2 REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Biology Paper 2 REVISION LESSONS

5 Resources
This bundle of 5 revision lessons covers the specification content which can be assessed in Paper 2 of the Edexcel GCSE Biology qualification. The topics covered within this bundle are: Topic 1: Key concepts in Biology Topic 6: Plant structures and functions Topic 7: Animal coordination, control and homeostasis Topic 8: Exchange and transport in animals Topic 9: Ecosystems and material cycles All of the lessons have been written to include a range of activities to engage the students whilst enabling them to assess and evaluate their content knowledge so that they address any areas which need further attention.
AQA GCSE Combined Science PAPERS 1 - 6 REVISION
GJHeducationGJHeducation

AQA GCSE Combined Science PAPERS 1 - 6 REVISION

6 Resources
This bundle contains 6 detailed revision resources which have been designed to challenge the students on their knowledge of the AQA GCSE Combined Science Trilogy Specification content that can be assessed in the 6 papers that they will sit whilst remaining engaged and motivated due to the wide range of activities. These activities include differentiated tasks, quiz competitions and exam questions with displayed answers. All of the Powerpoint-based lessons are so detailed and extensive that they are likely to be used over the course of a number of lessons, allowing the teacher to focus on specific areas for part of all of a lesson. The papers covered by these resources are: Paper 1: Biology topics B1 - B4 Paper 2: Biology topics B5 - B7 Paper 3: Chemistry topics C1 - C5 Paper 4: Chemistry topics C6-C10 Paper 5: Physics topics P1 - P4 Paper 6: Physics topics P5 - P7
Principles of HOMEOSTASIS and NEGATIVE FEEDBACK (AQA A-level Biology)
GJHeducationGJHeducation

Principles of HOMEOSTASIS and NEGATIVE FEEDBACK (AQA A-level Biology)

(0)
This is a fully-resourced lesson which has been designed to cover specification point 6.4.1 of the AQA A-level Biology specification. The resource contains a detailed and engaging PowerPoint and accompanying worksheets which ensure that students can apply their understanding of the principles of homeostasis to include the regulation by negative feedback. As homeostasis is a topic met at GCSE, this lesson has been written to build on this knowledge as well as to check on their prior knowledge of earlier A-level topics such as osmosis when considering blood water potential and the use of glucose as a respiratory substrate. Discussion points are written into the lesson at regular intervals to encourage the students to consider why a particular process or method takes place and understanding checks allow them to assess their progress. Students will recall how body temperature, blood water potential and blood glucose concentration are maintained within restricted limits and the importance of these systems are looked into in detail. Time is taken to consider the importance of maintaining these aspects, specifically with relation to the activity of enzymes. As such, students will also discuss how the pH of the blood is maintained. The key components of the control system are recalled and then time is taken to focus on the cell signalling that occurs between the coordination centre and the effectors. Students will learn to associate the response with either the use of the neuronal or hormonal system. The final part of the lesson looks at the importance of negative feedback in reversing the change in order to bring the aspect back to the optimum and the added degree of control which this provides. Positive feedback is also briefly mentioned at the end. This lesson has been written for A-level students who are studying the AQA A-level Biology course and because of the detail of this specification point, it is likely that this resource will cover 2 or more lessons in order for deep understanding to be developed.
Autonomic Nervous System (OCR A-level Biology)
GJHeducationGJHeducation

Autonomic Nervous System (OCR A-level Biology)

(0)
This detailed lesson looks at the structure and function of the motor neurones that form the autonomic nervous system and is responsible for automatic responses. The engaging PowerPoint and accompanying resource have both been designed to cover the second part of point 5.1.5 (g) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the functional organisation of the motor system into somatic and autonomic systems. Students will discover that this system is further divided into sympathetic and parasympathetic systems to control different aspects of a particular involuntary response. The lesson begins with a focus on the types of effectors that will be connected to the CNS by autonomic motor neurones. Students will learn that effectors which are not under voluntary control such as cardiac muscle, smooth muscle and glands will be innervated by these neurones. Moving forwards, a quick quiz competition is used to introduced ganglia as a structure which connects the two or more neurones involved in the cell signalling between the CNS and the effector. This leads into the discovery of the two divisions and students will begin to recognise the differences between the sympathetic and parasympathetic systems based on function but also structure. The remainder of the lesson looks at the differing effects of these two systems. This lesson has been written to tie in with the lesson on the organisation of the mammalian nervous system which covers the first part of specification point 5.1.5 (g)