A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A fully-resourced lesson which guides students through the method involved in calculating the empirical formula and includes a concise, clear lesson presentation (21 slides) and practice questions. Students are given a template to use as they are introduced to the questions and then encouraged to work without it as the lesson progresses. The students are shown how empirical formula questions can be made more difficult and hints are given so that students are able to tackle them and access all of the marks available.
This lesson has been designed for GCSE students (14 - 16 year olds in the UK)
A fully-resourced lesson which explores how ions are formed from atoms. The lesson includes an engaging lesson presentation (33 slides) and an associated worksheet to be used during an understanding check.
The first part of the lesson focuses on atoms and specifically on getting students to recall that they contains the same number of protons and electrons and this is why they have no charge. By ensuring that they are confident with this fact, they will be able to understand why ions have a charge. Students will learn that ions have full outer shells of electrons and this change in the number of this sub-atomic particle leads to the charge. They are shown examples with aluminium and oxygen and then challenged to apply this new-found knowledge to a task where they have to explain how group 1, 2, 5 and 7 atoms become ions. The final part of the lesson looks at how ion knowledge can be assessed in a question as they have to recognise the electron configuration of one and describe how many sub-atomic particles are found in different examples. There are regular progress checks throughout the lesson to allow the students to check on their understanding.
This lesson has been written for GCSE students but could be used with higher ability KS3 students who are looking to extend their knowledge past basic atomic structure
A fully-resourced lesson which guides students through using moles to calculate the mass of a substance in a reaction. The lesson includes a detailed lesson presentation (22 slides) and associated worksheets which are used to check the skills and understanding of the students.
The lesson begins by introducing the students to the three steps involved in a calculating mass question. These skills include calculating the relative formula mass and identifying molar ratios in equations to calculate amounts so time is taken to recap on how this is done before students are given the opportunity to try some progress check questions. A worked example brings these three steps together to guide the students to the final answer. The final task involves 4 questions where students are challenged to apply their new-found knowledge.
This lesson has been written for GCSE students (14 - 16 year olds in the UK)
A fully-resourced lesson which looks at the gaseous reversible reaction known as the Haber Process and then explores and explains why the specific conditions are chosen for this reaction. The lesson includes a detailed lesson presentation (29 slides) and associated worksheets which are differentiated.
The lesson begins by challenging the students to use a description of the reaction to complete the balanced symbol equation. A quiz competition involving both Chemistry and Maths skills is used to reveal the temperature and pressure which are chosen for this reaction. Students will learn that this only produces a yield of 30% and therefore are encouraged to question why these conditions are chosen. In doing so, they are made to wear two “hats”, so that they consider it from both a Science angle but also a business angle. Their knowledge of reversible reactions and the effect of changing either the temperature or the pressure on the position of the equilibrium are constantly challenged and then checked through a range of progress check questions. As a result of this lesson, students will understand that these conditions are a compromise and be able to explain why.
This lesson has been designed for GCSE students (14 - 16 year olds in the UK).
An informative lesson presentation (44 slides) that looks at the work of the key Scientists involved in the development of the atomic model. Dalton, Thomson, Rutherford and Bohr were four men whose work has led to the changes in the atomic model over the years and this lesson looks at parts of each of their work. There is a focus on Rutherford’s work with the alpha particles and students are challenged to draw conclusions based on the deflections they are shown. There is lots of time written into the lesson for consolidation and regular progress checks ensure that students have the opportunity to assess their understanding. This lesson has been written for GCSE students but could be used with KS3 students who perhaps are carrying out a project on the atom and want to add detail to their work
A resourced lesson which looks at a number of examples of biological polymers. The lesson includes an engaging lesson presentation (40 slides) and a couple of worksheets to be used in the understanding check task.
The starter activity challenges the students to use their Chemistry knowledge to come up with the abbreviation DNA. They will learn the key details of this polynucleotide and then time and focus is given to the nitrogenous bases and how they bond between the two strands. Moving forwards, students will be shown the next biological polymer that is a polypeptide. They are briefly shown how to draw a block diagram to represent the chain of amino acids. The final polymer are carbohydrates and students will learn how glycogen, starch and cellulose are formed from glucose monomers. Regular progress checks are written into the lesson at regular intervals to allow the students to check their understanding and ask questions.
This lesson has been written for GCSE students
A quick and fun lesson which goes through the accurate addition of state symbols to balanced symbol equations. The aim of this lesson is to give students quick and easy ways to recognise the state of matter of a reactant or product whilst being engaged trough the format of the lesson.
A number of quick quiz competitions are used in the lesson, either to introduce a new term of to act as a fun understanding check. First of all, students will use their Chemistry knowledge to come up with the fourth symbol, aq, which is commonly forgotten. Moving forwards, a worked example is used to guide the students through adding the state symbols. A visual of the experiment is shown in a video but could be done as a demonstration to help the students further. Finally, the students are challenged to apply their new-found knowledge and write a fully balanced symbol equation with state symbols. An assistance sheet is available for those who need a little push.
This lesson has been designed for GCSE students
An engaging and practical based lesson presentation (24 slides) which challenges the students to carry out a range of practical tasks to learn the identification tests and positive results for the anions.
The lesson begins by challenging the students to use their prior knowledge of chemical formulae to name two sets of ions. Students will be reminded of the definition of a cation so they can use this to write an accurate one for the anions. The rest of the lesson looks at the different tests and time is taken to explain the details behind each of them. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding. A set homework has also been included.
This lesson has been written for GCSE students.
A fully-resourced lesson that looks at the reaction of an acid with a metal or a metal carbonate and guides students through writing word and symbol equations to represent these reactions. This lesson includes a lesson presentation (39 slides) and differentiated worksheets.
The lesson begins by challenging the students to spot a pattern when naming the salts that are produced from these reactions. Students are shown how the second word of the salt’s name depends upon the particular acid involved in the reaction and are given opportunities to watch this in worked examples before applying their knowledge to a question. Students will also meet the general formula for the reaction of an acid with a metal carbonate. Moving forwards, a step by step guide is used to show the students how to write fully balanced symbol equations. Time is taken to specifically show them how to write accurate chemical formulae, including those which involve a bracket as is common in this topic. The final task challenges the students to bring all of this information together to write word and symbol equations for three reactions. This worksheet is differentiated two ways so students who require some assistance can still access the work.
This lesson has been written for GCSE students (14 - 16 year olds in the UK)
This lesson describes the meaning of an isotope and explains how to calculate the relative atomic mass using the relative masses and abundance of its isotopes. The PowerPoint and accompanying resources are part of the final lesson in a series of 3 lessons have been designed to cover the detail of points 1.1.4, 1.1.5 & 1.1.6 of the AQA GCSE Chemistry & Combined Science specifications.
The early topic 1 lessons covered the meaning of the atomic and mass number and the calculation of the number of subatomic particles, and this lesson begins by challenging the recall of this key information. Moving forwards, a quick quiz competition is used to introduce the term “isotope” and then the students have to calculate the number of subatomic particles in K-39, K-40 and K-41 before using their answers to complete a definition about these types of substances. Time is taken to explain how isotopes are represented in standard annotation and the importance of the mass number is emphasised. A series of application questions are used to challenge them to apply their understanding and knowledge and mark schemes are embedded into the PowerPoint to allow the students to self-mark.
The remainder of the lesson explains how the existence of isotopes results in some elements having relative atomic masses that are not whole numbers and then explains how these masses can be calculated. Once an example is demonstrated, the students are again given the chance to apply their understanding to a series of questions, and this exam question worksheet has been differentiated two ways
This lesson explains how to use the endings -ide and -ate when naming compounds. The lesson PowerPoint and accomapnying worksheet have been designed to cover point 1.25 of the Edexcel GCSE Chemistry specification and also covers that point in the Chemistry section of the Combined Science course
The lesson begins with some simple multiple choice questions to check that students can spot the chemical symbol and definition of an element, but more importantly pick out the formula for a compound. Time is taken to go through the explanation of why substances are elements or compounds and specific examples given. A quick understanding check, in the form of a competition called “To COM or NOT TO COM”,is used to check that students can identify elements or compounds from a name or given formula. The remainder of the lesson focuses on naming compounds. Students are challenged to spot a pattern when presented with the names of two compounds, which contain 2 elements only. For both compounds that contain 2 elements or 3 or more, the rules to naming are introduced before examples are shown so that students can visualise how to construct their answer. They are then given an opportunity to apply this to a number of questions in the set tasks. The last part of the lesson moves this forward by looking at how these same rules can be applied when the chemical formula of a compound is given and this is related to another topic as they are challenged to write a word equation containing a range of compounds when presented with the symbol equation. Progress checks are written into the lesson at regular intervals so that students can constantly assess their understanding.
Although this is written for Edexcel GCSE students, it is perfectly suitable for use with younger students who are learning about elements, compounds and mixtures and the teacher wants to push them onwards
This lesson describes the meaning of an isotope and explains how to calculate the relative atomic mass using the relative masses and abundance of its isotopes. The PowerPoint and accompanying resources have been designed to cover the detail of points 1.9, 1.11 & 1.12 of the Edexcel GCSE Chemistry & Combined Science specifications.
The early topic 1 lessons covered the meaning of the atomic and mass number and the calculation of the number of subatomic particles, and this lesson begins by challenging the recall of this key information. Moving forwards, a quick quiz competition is used to introduce the term “isotope” and then the students have to calculate the number of subatomic particles in K-39, K-40 and K-41 before using their answers to complete a definition about these types of substances. Time is taken to explain how isotopes are represented in standard annotation and the importance of the mass number is emphasised. A series of application questions are used to challenge them to apply their understanding and knowledge and mark schemes are embedded into the PowerPoint to allow the students to self-mark.
The remainder of the lesson explains how the existence of isotopes results in some elements having relative atomic masses that are not whole numbers and then explains how these masses can be calculated. Once an example is demonstrated, the students are again given the chance to apply their understanding to a series of questions, and this exam question worksheet has been differentiated two ways
This bundle of three lessons has been designed to cover the detail in points 1.1.4, 1.1.5 & 1.1.6 of the AQA GCSE Chemistry & Combined Science specifications which concern atomic structure. The lessons are fully resourced and are filled with a range of activities which will engage and motivate the students whilst challenging them on their current understanding as well as checking on their ability to make links to content covered earlier in topic 1.
If you would like to see the quality of these resources then download the size and mass of atoms lesson as this has been shared for free.
This lesson explains how to calculate the number of protons, neutrons and electrons in atoms and ions when given the atomic and mass numbers. The PowerPoint and accompanying resources are part of the second lesson in a series of 3 lessons which have been designed to cover the content of specification points 1.1.4, 1.1.5 & 1.1.6 of the AQA GCSE Chemistry and Combined Science specifications.
The lesson begins by challenging the students to put the chemical symbols for astatine, oxygen, iodine and carbon together to form the word atomic. Time is taken to explain the meaning of the atomic number and to emphasise how the number of protons in the nucleus is unique to atoms of that element. The students will learn that as the number of electrons is always the same as the number of protons in an atom, the atomic number can be used to calculate the numbers of both of these particles. Moving forwards, the mass number is considered and having been given the number of neutrons in a lithium atom, the students are challenged to articulate how the mass number and atomic number were used in this calculation. A series of worked examples are done as a class before the students are given the opportunity to challenge their understanding
The remainder of the lesson focuses on ions and how the number of protons, neutrons and electrons are calculated in these substances. Initially, the students are challenged to use their knowledge of the charge of an atom to deduce that ions must have differing numbers of protons and electrons. The standard annotation for ions are introduced and explained and a series of exam questions are then used to check understanding. Mark schemes for each of these final questions is embedded into the PowerPoint and the worksheet has been differentiated two ways
This lesson describes how to calculate the relative formula mass from simple chemical formulae and for those that include brackets. The PowerPoint and the accompanying worksheet have been designed to cover point 1.43 of the Edexcel GCSE Chemistry specification and also covers that point in the Chemistry section of the Combined Science course.
The lesson contains a wide range of tasks, understanding checks and quick quiz competitions to guide students through calculating the relative formula mass for substances with a range of chemical formulae. The relative formula mass is required in a lot of calculations, such as those that involve moles, so it is an important skill to get right. Worked examples are used throughout the lesson to visualise the metho for the students. Initially, students will learn how to calculate the mass from simple formulae before helpful hints are provided for harder formulae such as those that contain a bracket. Students are given the chance to apply their knowledge by proving that mass is conserved in a reaction and this prepares them for an upcoming lesson.
This lesson has been written for GCSE students but could be used with higher ability KS3 students in lessons that are looking to push knowledge forward
This lesson describes the differing properties of metals and non-metals and also relates this to their position in the Periodic Table. The lesson PowerPoint has been designed to cover points 1.18, 1.40 & 1.42 of the Edexcel GCSE Chemistry specification and this also covers those same points on the Combined Science course.
The lesson contains a range of tasks including guided discussion points and quick quiz competitions which will engage and motivate the students whilst introducing key properties such as malleability and the ability to conduct electricity. Time is also taken to consider where the metallic and non-metallic elements are found in the Periodic Table and a series of progress checks will challenge the students to link together properties with position.
An informative lesson presentation (30 slides) that ensures that students know the meaning of the independent, dependent and control variables in an investigation and are able to identify them. Students are challenged to use their definitions to spot the independent and dependent variable from an investigation title. Moving forwards, they are shown how they can use tables and graphs to identify them. The rest of the lesson focuses on the control variables and how these have to be controlled to produce valid results
This lesson is suitable for students of all ages studying Science as it is such a key skill
An engaging and informative lesson which uses a murder mystery style concept to challenge the students to use a range of identification tests to detect the cations and identify the killer. Students will enjoy the range of practical experiments which feed into the plot and allow them to find out who the owner of the belt buckle and earring back that were found at the crime scene.
This lesson has been designed for GCSE students (14 - 16 year olds in the UK) but could be used as part of a forensic science project or alike
A concise and engaging lesson, which looks at chemical and physical changes with the key objective that students can recognise the differences between the two. Key terminology is used throughout, such as irreversible and practical examples are discussed. A number of short sharp quiz competitions are used to maintain motivation as well as checking on the understanding.
This lesson is suitable for KS3 and GCSE students (11 - 16 year olds in the UK)
A fully resourced lesson, which includes differentiated worksheets, and guides the students through the process of extracting aluminium. There are close links throughout the lesson to the reactivity series and electrolysis so that the students are able to understand how the knowledge of all of these is brought together. Students will meet cryolite and recognise why this is used in the process and will finish off by writing half equations to show the products at the electrodes.
This lesson has been designed for GCSE students (14 - 16 year olds in the UK)