A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This is a concise revision resource which has been designed to cover the crucial details of topic C5 (Electricity and chemistry) of the CIE IGCSE Combined Science specification, for examination in June and November 2020 and 2021. The topic of electrolysis is commonly assessed in the examinations so time was taken during the design to ensure that understanding is constantly checked so that any misconceptions are addressed.
The following content receives particular attention in this revision lesson:
The use of the terms electrolyte, electrode, cathode and anode
Understanding that solid ionic compounds cannot be used in electrolysis, but only electrolytes when molten or in aqueous solution
The attraction of positive ions to the cathode and the gain of electrons
The attraction of negative ions to the anode and the loss of electrons
Predicting the products at the electrodes
The lesson finishes with a summary task about the electrolysis of aluminium oxide where students have to apply their knowledge. This sheet has been differentiated two ways so that students of different abilities are able to complete the task
This revision resource contains an engaging and detailed PowerPoint (66 slides) and associated worksheets, all of which are differentiated to allow students of different abilities to access the work. The range of activities that include exam questions with explained answers and quiz competitions covers the content within topic 11 (Air and water) of the CIE IGCSE Chemistry specification for examination in June and November 2020 and 2021. The resource was written to cover as much of the content as possible but the following topics have received particular attention:
The fractional distillation of air to separate oxygen and nitrogen
The composition of clean air
The variety of reactions that form carbon dioxide
The changes in the atmospheric levels of carbon dioxide and the link to global warming
The common pollutants and their effects on health and buildings
The treatment of water to make it safe
The chemical tests for water
The conditions needed for the Haber Process
Efforts have been made during the design of this lesson to make connections between topic 11 and the other topics in order to show students how important it is to make Biological links. In addition, there is a big emphasis on mathematical skills and guidance is given throughout to break down any barriers that students may have with these types of questions.
This bundle of 6 revision lessons challenges the students on their knowledge of the content of topics B1 - B7, C1 - C10 and P1 - P7 of the AQA GCSE Combined Science specification which will be assessed on the 6 terminal GCSE papers. Specifically, the range of tasks which include exam-style questions (with displayed answers), quiz competitions and discussion points, have been designed for students taking the FOUNDATION TIER papers but could also be used with students taking the higher tier who need to ensure that the key points are embedded on some topics.
The majority of the tasks are differentiated 2 or 3 ways so that a range of abilities can access the work whilst remaining challenged by the content.
If you would like to see the quality of these lessons, download the paper 2 and 5 revision lessons as these have been shared for free.
This lesson explains how to calculate the number of protons, neutrons and electrons in atoms and ions when given the atomic and mass numbers. The PowerPoint and accompanying resources are part of the second lesson in a series of 3 lessons which have been designed to cover the content of specification points 1.1.4, 1.1.5 & 1.1.6 of the AQA GCSE Chemistry and Combined Science specifications.
The lesson begins by challenging the students to put the chemical symbols for astatine, oxygen, iodine and carbon together to form the word atomic. Time is taken to explain the meaning of the atomic number and to emphasise how the number of protons in the nucleus is unique to atoms of that element. The students will learn that as the number of electrons is always the same as the number of protons in an atom, the atomic number can be used to calculate the numbers of both of these particles. Moving forwards, the mass number is considered and having been given the number of neutrons in a lithium atom, the students are challenged to articulate how the mass number and atomic number were used in this calculation. A series of worked examples are done as a class before the students are given the opportunity to challenge their understanding
The remainder of the lesson focuses on ions and how the number of protons, neutrons and electrons are calculated in these substances. Initially, the students are challenged to use their knowledge of the charge of an atom to deduce that ions must have differing numbers of protons and electrons. The standard annotation for ions are introduced and explained and a series of exam questions are then used to check understanding. Mark schemes for each of these final questions is embedded into the PowerPoint and the worksheet has been differentiated two ways
This bundle contains 6 detailed revision lessons which will engage and motivate the students whilst they are challenged on their knowledge of the content found in topics 6 - 10 of the AQA GCSE Chemistry specification. These are the topics which can be assessed on PAPER 2.
Each of the lessons has been written to contain a wide range of activities, including exam questions and quiz competitions, which will enable the students to recognise those areas which require their further attention.
The following topics are covered in this bundle:
Topic 6: The rate and extent of chemical change
Topic 7: Organic chemistry
Topic 8: Chemical analysis
Topic 9: Chemistry of the atmosphere
Topic 10: Using resources
The bundle also contains a PAPER 2 revision lesson which covers all of the topics within 1 lesson and shows students how questions can make links between the different topics.
This bundle contains 6 detailed revision lessons which will engage and motivate the students whilst they are challenged on their knowledge of the content found in topics 1 - 5 of the AQA GCSE Chemistry specification. These are the topics which can be assessed on PAPER 1.
Each of the lessons has been written to contain a wide range of activities, including exam questions and quiz competitions, which will enable the students to recognise those areas which require their further attention.
The following topics are covered in this bundle:
Topic 1: Atomic structure and the periodic table
Topic 2: Bonding, structures and properties of matter
Topic 3: Quantitative chemistry
Topic 4: Chemical changes
Topic 5: Energy changes
The bundle also contains a PAPER 1 revision lesson which covers all of the topics within 1 lesson and shows students how questions can make links between the different topics.
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics C1 - C5, that will assessed on PAPER 3. It has been specifically designed for students on the AQA GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood.
The lesson has been written to cover as many sub-topics as possible, but the following have been given particular attention:
The relative mass and charge of protons, electrons and neutrons
Using the Periodic table to calculate numbers of the sub-atomic particles
Writing elements and compounds in chemical symbol equations
Covalent structures
Drawing dot and cross diagrams for covalent and ionic compounds
The transfer of electrons during the formation of an ionic bond
Properties of metals and non-metals
States of matter
Conservation of mass and balancing symbol equations
Calculating the relative formula mass
Electrolysis of molten salts and aqueous solutions
Extraction of metals
In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as drawing dot and cross diagrams and writing chemical formulae.
Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3/4 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 3 exam.
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of the content in topics C1 - C4, that will assessed on PAPER 3. It has been specifically designed for students on the Edexcel GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood.
The lesson has been written to cover as many sub-topics as possible, but the following have been given particular attention:
The relative mass and charge of protons, electrons and neutrons
Using the Periodic table to calculate numbers of the sub-atomic particles
Writing elements and compounds in chemical symbol equations
Simple and giant covalent structures
Explaining the difference in conductivity of graphite and diamond
Drawing dot and cross diagrams for ionic compounds
The transfer of electrons during the formation of an ionic bond
Writing chemical formulae for ionic compounds
Conservation of mass and balancing symbol equations
Calculating the relative formula mass
Electrolysis of molten salts and aqueous solutions
Extraction of metals
In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as drawing dot and cross diagrams, diamond and graphite and writing chemical formulae.
Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3/4 teaching hours to complete the tasks and therefore this can be used at different points throughout the duration of the course as well as acting as a final revision before the PAPER 3 exam.
This fully-resourced lesson has been written to prepare students for the range of mathematical-based questions that they may face on the two OCR GCSE Chemistry papers. The lesson has been designed to contain a wide range of activities which includes 8 quiz competition rounds spread across the duration of the lesson to maintain engagement whilst the students assess their understanding.
The mathematical skills covered in this lesson include:
Calculating the number of sub-atomic particles in atoms and ions
Writing chemical formulae for ionic compounds
Identifying isotopes
Using Avogadro’s constant to calculate the number of particles
Calculating the relative formula mass
Calculating amount in moles using the mass and the relative formula mass
Balancing chemical symbol equations
Calculating reacting masses
Gas calculations using molar volume
Calculating concentration of solutions
Titration calculations
Deducing the empirical formula
Calculating energy changes in reactions
Most of the resources have been differentiated two ways to allow students of differing abilities to access the work whilst still being challenged. In addition, step by step guides are used to demonstrate how to carry out some of the more difficult calculations such as the harder mole calculations and calculating masses in reactions
This lesson could be used with higher ability students on the OCR GCSE Combined Science course by taking out the sections which are not applicable.
This lesson explains how to use the endings -ide and -ate when naming compounds. The lesson PowerPoint and accomapnying worksheet have been designed to cover point 1.25 of the Edexcel GCSE Chemistry specification and also covers that point in the Chemistry section of the Combined Science course
The lesson begins with some simple multiple choice questions to check that students can spot the chemical symbol and definition of an element, but more importantly pick out the formula for a compound. Time is taken to go through the explanation of why substances are elements or compounds and specific examples given. A quick understanding check, in the form of a competition called “To COM or NOT TO COM”,is used to check that students can identify elements or compounds from a name or given formula. The remainder of the lesson focuses on naming compounds. Students are challenged to spot a pattern when presented with the names of two compounds, which contain 2 elements only. For both compounds that contain 2 elements or 3 or more, the rules to naming are introduced before examples are shown so that students can visualise how to construct their answer. They are then given an opportunity to apply this to a number of questions in the set tasks. The last part of the lesson moves this forward by looking at how these same rules can be applied when the chemical formula of a compound is given and this is related to another topic as they are challenged to write a word equation containing a range of compounds when presented with the symbol equation. Progress checks are written into the lesson at regular intervals so that students can constantly assess their understanding.
Although this is written for Edexcel GCSE students, it is perfectly suitable for use with younger students who are learning about elements, compounds and mixtures and the teacher wants to push them onwards
This lesson describes the differing properties of metals and non-metals and also relates this to their position in the Periodic Table. The lesson PowerPoint has been designed to cover points 1.18, 1.40 & 1.42 of the Edexcel GCSE Chemistry specification and this also covers those same points on the Combined Science course.
The lesson contains a range of tasks including guided discussion points and quick quiz competitions which will engage and motivate the students whilst introducing key properties such as malleability and the ability to conduct electricity. Time is also taken to consider where the metallic and non-metallic elements are found in the Periodic Table and a series of progress checks will challenge the students to link together properties with position.
This lesson describes how the empirical formula of a compound can be deduced from the masses of the different parts. The PowerPoint and accompanying resources have been designed to cover points 1.44 & 1.45 of the Edexcel GCSE Chemistry specification and also covers those points in the Chemistry section of the Combined Science course.
This lesson uses a step-by-step guide to walk students through the method involved in calculating the empirical formula. Students are given a template to use as they are introduced to the questions and then encouraged to work without it as the lesson progresses. The students are shown how empirical formula questions can be made more difficult and hints are given so that students are able to tackle them and access all of the marks available.
This lesson describes the reactants and products of the Haber Process and then explores and explains why the specific conditions are chosen for this reaction. The PowerPoint and accompanying worksheets have been designed to cover specification point 10.4.1 of the AQA GCSE Chemistry specification. The summary passage which is completed at the end of the lesson has been differentiated two ways.
The lesson begins by challenging the students to use a description of the reaction to complete the balanced symbol equation. A quiz competition involving both Chemistry and Maths skills is used to reveal the temperature and pressure which are chosen for this reaction. Students will learn that this only produces a yield of 30% and therefore are encouraged to question why these conditions are chosen. In doing so, they are made to wear two “hats”, so that they consider it from both a Science angle but also a business angle. Their knowledge of reversible reactions and the effect of changing either the temperature or the pressure on the position of the equilibrium are constantly challenged and then checked through a range of progress check questions. As a result of this lesson, students will understand that these conditions are a compromise and be able to explain why.
This lesson describes the meaning of an isotope and explains how to calculate the relative atomic mass using the relative masses and abundance of its isotopes. The PowerPoint and accompanying resources have been designed to cover the detail of points 1.9, 1.11 & 1.12 of the Edexcel GCSE Chemistry & Combined Science specifications.
The early topic 1 lessons covered the meaning of the atomic and mass number and the calculation of the number of subatomic particles, and this lesson begins by challenging the recall of this key information. Moving forwards, a quick quiz competition is used to introduce the term “isotope” and then the students have to calculate the number of subatomic particles in K-39, K-40 and K-41 before using their answers to complete a definition about these types of substances. Time is taken to explain how isotopes are represented in standard annotation and the importance of the mass number is emphasised. A series of application questions are used to challenge them to apply their understanding and knowledge and mark schemes are embedded into the PowerPoint to allow the students to self-mark.
The remainder of the lesson explains how the existence of isotopes results in some elements having relative atomic masses that are not whole numbers and then explains how these masses can be calculated. Once an example is demonstrated, the students are again given the chance to apply their understanding to a series of questions, and this exam question worksheet has been differentiated two ways
This bundle of three lessons has been designed to cover the detail in points 1.1.4, 1.1.5 & 1.1.6 of the AQA GCSE Chemistry & Combined Science specifications which concern atomic structure. The lessons are fully resourced and are filled with a range of activities which will engage and motivate the students whilst challenging them on their current understanding as well as checking on their ability to make links to content covered earlier in topic 1.
If you would like to see the quality of these resources then download the size and mass of atoms lesson as this has been shared for free.
This lesson uses a 10-question multiple choice assessment, exam-style questions and various tasks to support students in their revision of topic C3. The PowerPoint and accompanying resources have been designed to challenge the foundation tier content of topic C3 (Quantitative chemistry) of the AQA GCSE combined science specification.
The multiple-choice assessment consists of 10 questions, 8 of which challenge the content of topic C3 before the final 2 questions challenge knowledge from topics C1 and C2. All answers are embedded into the PowerPoint so students can mark their work, and the workings for any mathematical-based questions are explained in full. There are also additional understanding checks and tasks and 1 competition to allow students to identify the areas of the topic which will need revisiting before the mocks or final examinations.
The following sub-topics are covered in this revision lesson; Conservation of mass and balanced chemical equations, Relative formula mass, Changes in mass when a gas is involved, Concentration of solutions, Atomic structure, Electrons in ionic and covalent bonding.
This lesson uses 10 multiple-choice questions (and answers) to support students in their revision of bonding, structure, and the properties of matter. The resources have been designed to challenge the content of topic C2 of the AQA GCSE combined science specification and specifically for students taking the foundation tier. In addition to the 10 multiple-choice questions, the PowerPoint also contains additional understanding checks, and a variety of tasks and competitions which allow the students to assess their understanding of the following topics:
Ionic bonding and compounds
Naming ionic compounds
The charge of ions
Metallic bonding
Covalent bonding
Giant covalent structures
The structure and properties of diamond and graphite
States of matter
The final two questions on the multiple-choice assessment challenge knowledge of groups of the periodic table and sub-atomic particles from topic C1
This is a fully-resourced lesson about group 7 of the Periodic Table, the halogens, which includes a lesson presentation (34 slides) and a differentiated worksheet. The lesson begins by challenging students to recognise and explain why the electronic structure of group 1 and group 7 means that they react together easily. As the lesson progresses, students will learn more and more properties about the halogens and key terms such as diatomic are used throughout so that students become accustomed to these. Moving forwards, students will carry out a series of displacement reactions so that they can recognise that the reactivity of these elements decreases as they go down the group. Students are challeged to explain this with reference to electron configuration and a differentiated worksheet will help those who need assistance to access this work.
This lesson has been designed for GCSE students (14 - 16 year olds in the UK) but is suitable for younger students who might be carrying out a project on the Periodic Table