A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This fully-resourced lesson describes how to calculate the concentration of solution in grams per decimetres cubed and mol per decimetre cubed. The lesson PowerPoint and accompanying questions which are differentiated have been designed to cover points 1.49 & 5.8 of the Edexcel GCSE Chemistry specification.
The lesson begins by introducing students to volumes in decimetres cubed and time is taken to ensure that students are able to convert to this measurement from volumes in centimetres cubed. Moving forwards, students are shown how to calculate the concentration in both units through the use of worked examples and then they are challenged to apply this to a series of exam-style questions which have been differentiated so students of differing abilities can access the work
This is a fully-resourced lesson that looks at the meaning of a limiting reactant in a chemical reaction and guides students through how to apply this to a number of calculations. Step by step guides are used to go through worked examples so students are able to visualise how to set out their work.
The lesson begins with a fun analogy involving sausages and potatoes so that students can identify that the potatoes limited the sale of food. Alongside this, students will learn the key term excess. Some time is then taken to ensure that students can spot the limiting reactant and the one in excess in actual chemical reactions and method descriptions. Moving forwards, students will be guided through two calculations that involve limiting reactants - those to calculate the theoretical yield and the other to calculate a balanced symbol equation. Other skills involved in these calculations such as calculating the relative formula mass are recalled and a few examples given to ensure they are confident. The question worksheet has been differentiated two ways so that any students who need extra assistance can still access the learning.
This lesson has been written for GCSE students.
This bundle of 8 lessons covers the majority of the content in the sub-topic C6.1 (Improving processes and products) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include:
Extracting metals by using carbon
Explain why and how electrolysis is used to extract metals from their ores
Alternative biological methods of metal extraction
The separation of crude oil by fractional distillation
The fractions as alkanes
The production of useful products by cracking
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 4 lesson presentations and associated resources cover a lot of the mathematical skills that can be tested in Science. Since the move to the new GCSE specifications, the mathematical element has increased significantly and these lessons act to guide students through these skills. Students are shown how to convert between units, rearrange to change the subject of the formula and to use significant figures and standard form.
This bundle of 10 lessons covers all of the content in Topic C4 (Stoichiometry) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specific points covered within these lessons include:
Use the symbols of the elements and write the formulae of simple compounds
Determine the formula of an ionic compounds from the charges on the ions present
Construct and use word equations
Construct and use symbol equations, with state symbols, including ionic equations
Deduce the balanced equation
Relative formula mass
Define the mole in terms of Avogadro’s constant
Use the molar gas volume
Calculate stoichiometric reacting masses and volumes of gases
Calculate the concentration of solution
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
This is a fully-resourced lesson which includes an engaging and detailed lesson presentation and differentiated worksheets that together guide students through the key details of endothermic and exothermic reactions. This lesson has been designed for GCSE students but could be used with students entering this topic at A-level who are looking for a recap on the key details.
This lesson focuses on a few critical areas of these reactions and those which are often poorly understood. For example, considerable time is taken to ensure that students understand how energy is taken in to break bonds in a reaction and given out when bonds are formed. From this basis, they learn to compare the amount of energy taken in with the amount given out and ultimately determine whether it is an endothermic or exothermic reaction. The format of the lesson is that students are guided through the combustion of methane as an exothermic reaction and shown how to draw reaction profiles and calculate energy changes using the bond energies to prove it is that type of reaction. Having worked with the teacher and each other on this reaction, students are then challenged to bring their skills together to describe, explain and represent an endothermic reaction. If students feel that they will need some assistance on this task, the worksheet has been differentiated so they can still access the learning. There are a number of quick competitions written into the lesson to maintain engagement and also progress checks are found at regular intervals so students can constantly assess their understanding. The lesson finishes with a final game called The E factor which tests the students knowledge from across the whole lesson.
This bundle of 4 lessons covers all of the content in the sub-topic C4.2 (Identifying the products of chemical reactions) of the OCR Gateway A GCSE Chemistry specification. The topics covered within these lessons include:
Detecting gases
Detecting cations
Detecting anions
Instrumental methods of analysis
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quick differentiated tasks and quiz competitions to allow students to assess their knowledge of the topic of moles and related topics as covered in the GCSE Chemistry and GCSE Combined Science courses. An understanding of moles and their associated calculations is critical for the success of a student in these two courses.
The following topics are covered in this revision lesson:
Avogadro’s law and constant
Mole calculations involving Avogadro’s constant
Mole calculations involving the formula, moles = mass x molar mass
Mole calculations involving the constant and the formula
Moles in balanced symbol equations and identifying molar ratios of reactants or reactants to products
Calculating masses in reactions
Gas calculations (molar volume)
Concentration of solutions (in mol per decimetre cubed)
Students will be engaged through the range of activities which includes quiz competitions such as “Fill the VOID” where students have to complete some equations which have pieces missing and also “In the BALANCE” where students have to balance equations in order to work out the number of moles on each side of the reaction. This lesson can be used at any time during the year as a revision material, in the lead up to mocks or as a final revision lesson before the GCSE terminal exams.
This bundle of 6 revision lessons covers the content that can be assessed across the 6 papers that students will be required to take as part of the OCR Gateway A GCSE Combined Science qualification.
The 6 papers and respective topics are:
Paper 1 (Biology) J250/01
Cell-level systems
Scaling up
Organism level systems
Paper 2 (Biology) J250/02
Community level systems
Interaction between systems
Global challenges
Paper 3 (Chemistry) J250/03
Particles
Elements, compounds and mixtures
Chemical reactions
Paper 4 (Chemistry) J250/04
Predicting and identifying reactions and products
Monitoring and controlling chemical reactions
Global challenges
Paper 5 (Physics) J250/05
Matter
Forces
Electricity and magnetism
Paper 6 (Physics) J250/06
Waves and radioactivity
Energy
Global challenges
All of the lessons have been written to engage and motivate the students whilst they evaluate their understanding of the different papers
This bundle contains 6 detailed revision resources which have been designed to challenge the students on their knowledge of the AQA GCSE Combined Science Trilogy Specification content that can be assessed in the 6 papers that they will sit whilst remaining engaged and motivated due to the wide range of activities. These activities include differentiated tasks, quiz competitions and exam questions with displayed answers.
All of the Powerpoint-based lessons are so detailed and extensive that they are likely to be used over the course of a number of lessons, allowing the teacher to focus on specific areas for part of all of a lesson. The papers covered by these resources are:
Paper 1: Biology topics B1 - B4
Paper 2: Biology topics B5 - B7
Paper 3: Chemistry topics C1 - C5
Paper 4: Chemistry topics C6-C10
Paper 5: Physics topics P1 - P4
Paper 6: Physics topics P5 - P7
A fun and engaging lesson presentation (74 slides) and accompanying differentiated worksheets that uses exam questions with displayed mark schemes and competitions to enable students to assess their understanding of Module C4 (Predicting and identifying reactions and products). The following topics within the combined Science specification are covered by the tasks:
C4.1 Predicting chemical reactions
Group 1 - the alkali metals
Group 7 - the halogens
Halogen displacement reactions
Group 0 - the noble gases
Reactivity of elements
C4.2 Identifying the products of chemical reactions
Detecting gases
Students will be able to use the understanding checks to see which areas of the specification need more attention
An engaging lesson presentation (48 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit C1 (Particles) of the OCR Gateway A GCSE Combined Science specification.
The topics that are tested within the lesson include:
Introducing particles
Chemical and physical changes
Atomic structure
Isotopes
Developing the atomic model
Students will be engaged through the numerous activities including quiz rounds like “SPOT the SCIENTIST” and “Order, Order” whilst crucially being able to recognise those areas which need further attention
This engaging and detailed lesson presentation (43 slides) uses a step by step guide to take students through the important scientific skill of drawing graphs to represent data and address all the misconceptions and misunderstandings that often accompany this topic. The lesson begins by explaining to the students how to decide whether data should be represented on a line graph or a bar chart and a competition called "To BAR or not to BAR" is used to allow them to check their understanding while maintaining motivation. Moving forwards, students are shown a 6 step guide to drawing a line graph. Included along the way are graphs that are wrong and explanations as to why so that students can see what to avoid. There are continuous progress checks and a homework is also included as part of the lesson.
This lesson is written for students of all ages who are studying Science.
An engaging lesson presentation (42 slides) and associated worksheet that uses a combination of exam questions, understanding checks, quick tasks and a quiz competition to help the students to assess their understanding of the topics found within the Chemistry unit C5 (Energy changes) of the AQA GCSE Combined Science specification (specification point C5.5). The lesson includes useful hints and tips to encourage success in assessments. For example, students are shown how to use the energy change in a chemical reaction to work out if it is an endothermic or exothermic reaction.
The topics that are tested within the lesson include:
Endothermic and exothermic reactions
Reaction profiles
Calculating energy changes in reactions
Students will be engaged through the numerous activities including a summary round called “E NUMBERS” which requires them to use all of their knowledge to work out the type of reactions that are shown.
An engaging lesson which looks at the properties of the Transition metals of the Periodic Table and ultimately compares these properties against other metals, such as the Alkali metals. Through the use of a range of motivating tasks and quiz competitions, students will learn that the transition metals form coloured compounds, have a number of ion charges, act as catalysts and are harder, stronger but less reactive than group 1.
This lesson has been written for GCSE students (14 - 16 year olds) but is suitable for younger students who are looking at the patterns and trends in the Periodic Table
A fully-resourced lesson, which includes a lesson presentation (49 slides) and associated worksheets and guides students through the topic of extracting metals. The main focus of the lesson is the extracting of the metals (from their oxides) that fall below carbon in the reactivity series. Students will see how the metal oxides are reduced in order to form the required metal. Some time is taken to briefly look at the extraction of aluminium from aluminium oxide but if a lesson on the extraction of a particular metal is sought, then please look at my additional resources which cover iron and aluminium in greater detail.
This lesson has been designed for GCSE students (14 - 16 year olds in the UK)
A resourced lesson which guides students through the method of writing word equations for a range of different chemical reactions. The lesson includes an engaging and informative lesson presentation (33 slides) and an associated worksheet containing questions.
The lesson begins by reminding students of the form which word equations take, with the reactants chemically changing into the products. Moving forwards, time is taken to show students how to work out the name of a compound that contains either 2 or 3 elements. This moves nicely into the reaction of acids and how to name the salt that is produced. Students are shown the general formula for the reactions of acids with a metal, a metal carbonate and a metal oxide or hydroxide so that they can form word equations for each of these reactions in the progress check task. The final section of the lesson introduces reversible reactions to the students and shows them the symbol that is used in these word equations to replace the arrow. There are regular progress checks throughout the lesson to allow the students to check on their understanding and thorough explanations of the required answers.
This lesson has been written for GCSE students but is perfectly suitable for KS3 students too.
An informative lesson presentation (24 slides) that looks at the relative size of the nanoparticles and explains why they are so effective for a range of purposes.
The lesson begins by looking at exactly how small nanoparticles are and ensures that students can recognise this size in a range of ways, including standard form. Moving forwards, in order to help students to understand why these nanoparticles are being used in a lot of different ways, students are introduced to bulk materials. Included in the remainder of the lesson is calculating the surface area to volume ratio so this can be used as a comparison point. There are regular progress checks throughout the lesson so that students can assess their understanding.
This lesson has been written for GCSE students.
An informative lesson presentation (44 slides) that looks at the work of the key Scientists involved in the development of the atomic model. Dalton, Thomson, Rutherford and Bohr were four men whose work has led to the changes in the atomic model over the years and this lesson looks at parts of each of their work. There is a focus on Rutherford’s work with the alpha particles and students are challenged to draw conclusions based on the deflections they are shown. There is lots of time written into the lesson for consolidation and regular progress checks ensure that students have the opportunity to assess their understanding. This lesson has been written for GCSE students but could be used with KS3 students who perhaps are carrying out a project on the atom and want to add detail to their work
A fully-resourced lesson which looks at the chemical reaction that is aerobic respiration and ensures that students can apply their knowledge to application questions which challenge them to make links to related topics. The lesson includes a practical-based lesson presentation (19 slides) and associated worksheets containing differentiated questions.
The aim of the beginning of the lesson involves getting students to understand the term, concentration, so that they are able to use it accurately in their descriptions. This is a term which is commonly wrongly used by students. Moving forwards, students will carry out a practical to collect valid results so that they can apply their knowledge of concentration to explain a trend. Certain practical skills are challenged during the lesson such as the drawing of a results table to display the results. A worksheet containing questions on the practical is differentiated so that students who need assistance are still able to access the learning.
This lesson has been designed for GCSE students but can be used with KS3 students who are learning about chemical reactions.