Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1122k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
CIE IGCSE Chemistry Topic 14 REVISION (Organic chemistry)
GJHeducationGJHeducation

CIE IGCSE Chemistry Topic 14 REVISION (Organic chemistry)

(0)
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quiz tasks and quiz competitions to enable students to assess their understanding of the content within topic 14 (Organic chemistry) of the CIE IGCSE Chemistry (0620) specification. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers. The specification points that are covered in this revision lesson include: CORE Name and draw the structures of methane, ethane, ethene, ethanol, ethanoic acid and the products of their reactions State the type of compound present, given a chemical name ending in -ane, -ene, -ol, or -oic acid or a molecular structure Describe petroleum as a mixture of hydrocarbons and its separation into useful fractions by fractional distillation Describe the properties of molecules within a fraction Describe the concept of homologous series as a ‘family’ of similar compounds with similar chemical properties due to the presence of the same functional group Describe the properties of alkanes Describe the bonding in alkanes Describe the manufacture of alkenes and of hydrogen by cracking Distinguish between saturated and unsaturated hydrocarbons: Define polymers as large molecules built up from small units (monomers) SUPPLEMENT Name and draw the structures of the unbranched alkanes, alkenes (not cis-trans), alcohols and acids containing up to four carbon atoms per molecule Name and draw the structural formulae of the esters which can be made from unbranched alcohols and carboxylic acids, each containing up to four carbon atoms Recall that the compounds in a homologous series have the same general formula Understand that different polymers have different units and/or different linkages Describe the structure of proteins The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Are you on FORM” where they compete to be the 1st to name an organic compound from its formula whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
AQA GCSE Physics Topic 6 REVISION (Waves)
GJHeducationGJHeducation

AQA GCSE Physics Topic 6 REVISION (Waves)

(0)
This is an engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 6 (Waves) of the AQA GCSE Physics (8463) specification. The specification points that are covered in this revision lesson include: Transverse and longitudinal waves Properties of waves Reflection of waves Sound waves Waves for detection and exploration Types of electromagnetic waves Properties of electromagnetic waves Visible light The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Should you WAVE goodbye” where they have to determine whether a passage about waves is 100% correct or not whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
Condensation polymers
GJHeducationGJHeducation

Condensation polymers

(0)
This is an engaging lesson that looks at a range of condensation polymers that are formed by condensation reactions. The lesson includes a detailed lesson presentation (51 slides) and accompanying worksheets which contain a differentiated task. The lesson begins by providing the students with a definition of a condensation reaction and challenging them to predict the identity of the smaller molecule. Moving forwards, students will learn that as well as water being a product, the larger molecule is known as a condensation polymer. Time is taken to look at a range of condensation polymers throughout the course of the lesson, and this includes both natural and artificial examples. Students are shown how to draw block diagrams to visualise how the functional groups react and then once water is removed, they are able to see the group that remains and joins the parts together. Students are shown how to name the ester formed according to the carboxylic acid and alcohol involved. The final part of the lesson involves a summary quiz called “It’s time to take the POLYGRAPH” where they have to read a number of passages about condensation polymers and decide which ones are telling lies and which are the truth. This lesson has been written for GCSE students
Edexcel GCSE Combined Science Paper 6 (Physics 2) REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Combined Science Paper 6 (Physics 2) REVISION LESSONS

6 Resources
This bundle of 6 REVISION lessons covers the content in the following topics that can be assessed on Paper 6 (Physics 2) of the Edexcel GCSE Combined Science course: Topic 1: Key concepts in Physics Topic 8: Energy - forces doing work Topic 10: Electricity and their circuits Topic 12: Magnetism and the motor effect Topic 13: Electromagnetic induction Topic 14: Particle model Topic 15: Forces and matter Each of the lessons have been designed to include a wide range of activities that will keep the students engaged whilst they assess their knowledge of each of these topics.
Edexcel A-level Biology A2 REVISION LESSONS (Topics 5 - 8)
GJHeducationGJHeducation

Edexcel A-level Biology A2 REVISION LESSONS (Topics 5 - 8)

4 Resources
This bundle of 4 revision lessons covers the content in topics 5 - 8 of the Edexcel A-level Biology (Salters Nuffield) specification that are taught during year 13 (A2) of the two-year course. Each of the lessons has been designed to include a range of exam questions, differentiated tasks and quiz competitions that will motivate the students whilst they evaluate their understanding of the different sub-topics. Helpful hints are given throughout the lesson to aid the students in structuring their answers and the mathematical elements of the course are constantly challenged as well. The 4 topics covered by this bundle are: Topic 5: On the wild side Topic 6: Immunity, infection and forensics Topic 7: Run for your life Topic 8: Grey matter
Edexcel GCSE Combined Science Topic B2 REVISION (Cells and control)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic B2 REVISION (Cells and control)

(0)
This is a fully-resourced REVISION lesson which challenges the students on their knowledge of the content in TOPIC B2 (Cells and control) of the Edexcel GCSE Combined Science specification. The lesson uses an engaging PowerPoint (70 slides) and accompanying worksheets to motivate students whilst they assess their understanding of this topic. A range of exam questions, quick tasks and quiz competitions are used to test the following sub-topics: The structure of the CNS Reflex reactions and the neurones involved Synapses Mitosis and the cell cycle The use of percentile charts to monitor growth Cell differentiation and specialisation Stem cells and their potential for use in medicine There is a big emphasis on the mathematical elements of the course such as percentage change and standard form and students are given helpful hints on exam techniques and how to structure answers. This resource is suitable for use at the end of topic B2 or in the lead up to mocks or the actual GCSE exams.
Edexcel GCSE Biology Topic 4 REVISION (Natural selection and modification)
GJHeducationGJHeducation

Edexcel GCSE Biology Topic 4 REVISION (Natural selection and modification)

(0)
This REVISION resource has been written with the aim of motivating the students whilst they are challenged on their knowledge of the content in TOPIC 4 (Natural selection and modification) of the Edexcel GCSE Biology specification. The resource contains an engaging and detailed PowerPoint (82 slides) and accompanying worksheets, some of which are differentiated to provide extra scaffolding to students when it is required. The wide range of activities have been designed to cover as much of topic 4 as possible but the following sub-topics have been given a particular focus: The discovery of human fossils Stone tools as evidence of human evolution Evolution by natural selection The development of antibiotic resistance in bacteria The three domain and five kingdom classification methods Genetic engineering Selective breeding The benefits and risks of genetic engineering and selective breeding for the growing population The use of fertilisers and biological control There is a large emphasis on mathematical skills in the new specification and these are tested throughout the lesson. This resource is suitable for use at the end of topic 4, in the lead up to mocks or in the preparation for the final GCSE exams.
AQA GCSE Chemistry PAPER 1 REVISION LESSONS
GJHeducationGJHeducation

AQA GCSE Chemistry PAPER 1 REVISION LESSONS

6 Resources
This bundle contains 6 detailed revision lessons which will engage and motivate the students whilst they are challenged on their knowledge of the content found in topics 1 - 5 of the AQA GCSE Chemistry specification. These are the topics which can be assessed on PAPER 1. Each of the lessons has been written to contain a wide range of activities, including exam questions and quiz competitions, which will enable the students to recognise those areas which require their further attention. The following topics are covered in this bundle: Topic 1: Atomic structure and the periodic table Topic 2: Bonding, structures and properties of matter Topic 3: Quantitative chemistry Topic 4: Chemical changes Topic 5: Energy changes The bundle also contains a PAPER 1 revision lesson which covers all of the topics within 1 lesson and shows students how questions can make links between the different topics.
CIE IGCSE Biology Topic 5 REVISION (Enzymes)
GJHeducationGJHeducation

CIE IGCSE Biology Topic 5 REVISION (Enzymes)

(0)
This revision resource includes exam questions, understanding checks and quiz competitions, all of which have been designed with the aim of motivating and engaging the students whilst they assess their understanding of the content found in topic 5 (Enzymes) of the CIE IGCSE Biology specification for examination in June and November 2020 and 2021. This revision resource contains an engaging PowerPoint (25 slides) and associated worksheet. The range of activities have been designed to cover as much of the Core and supplement content as possible but the following sub-topics have been given particular attention: Define enzymes as proteins that function as biological catalysts Explain enzyme action with reference to active site, substrate and enzyme-substrate complex Explain the specificity of enzymes Explain the effect of changes of temperature on enzyme activity Explain the effect of changes of pH on enzyme activity Describe what happens to an enzyme when it is denatured
CIE IGCSE Biology REVISION LESSONS
GJHeducationGJHeducation

CIE IGCSE Biology REVISION LESSONS

8 Resources
This bundle contains 8 revision lessons which cover some of the major topics in the CIE IGCSE Biology specification, for examination in June and November 2020 and 2021. All of the lessons are engaging and motivating and give the students the opportunity to assess their understanding of these topics so they can recognise those areas which need their further attention. The topics included in this bundle are: Topic 1: Characteristics and classification of living organisms Topic 2: Organisation of the organism Topic 3: Movement in and out of cells Topic 4: Biological molecules Topic 5: Enzymes Topic 9: Transport in animals Topic 10: Diseases and immunity Topic 11 & 12: Gas exchange in humans & respiration
The eye and eye defects (Edexcel GCSE Biology)
GJHeducationGJHeducation

The eye and eye defects (Edexcel GCSE Biology)

(0)
This lesson has been designed to cover the content as detailed in points 2.15, 2.16 and 2.17 (The eye as a sensory receptor and the correction of eye defects) of the Edexcel GCSE Biology specification. Consisting of a detailed and engaging PowerPoint (54 slides) and accompanying worksheets, the range of activities will motivate the students whilst ensuring that the content is covered in detail. Students will learn how the structures of the eye enable it to function as a sensory receptor, with a particular focus on the role of the cornea, lens, iris and the rod and cone cells in the retina. In addition, students will understand how eye defects such as short-sightedness and cataracts can cause problems for vision and can be corrected. Progress checks are included throughout the lesson so that students can assess their understanding of the content and any misconceptions can be addressed whilst quiz competitions are used to introduce new terms in a fun and memorable way. This lesson has been written for GCSE-aged students who are studying the Edexcel GCSE Biology specification but can be used with younger students who have a real interest in this sensory receptor as well as older students who need to know the key details for their A level course.
AQA A-level Biology Topic 4.3 (Genetic diversity can arise as a result of mutation or meiosis)
GJHeducationGJHeducation

AQA A-level Biology Topic 4.3 (Genetic diversity can arise as a result of mutation or meiosis)

4 Resources
Each of the 4 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 4.3 (Genetic diversity can arise as a result of mutation or meiosis) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include: Base deletions and base substitutions as examples of gene mutations The degenerate nature of the genetic code Mutagenic agents increase the rate of mutation Chromosome mutations arise spontaneously during meiosis Meiosis produces genetically different daughter cells Crossing over and independent segregation as events that contribute to genetic variation The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics If you would like to see the quality of the lessons, download the gene mutations lesson which is free
Gene linkage (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Gene linkage (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson is clear and concise and has been written to explain how the inheritance of two or more genes that have loci on the same chromosome demonstrates linkage. The engaging PowerPoint and associated resource have been designed to cover point 3.8 (i and ii) of the Pearson Edexcel A-level Biology (Salters Nuffield) specification which states that students should know the meaning of a gene locus and understand the linkage of genes on a chromosome. This is a topic which can cause confusion for students so time was taken in the design to split the concept into small chunks. There is a clear focus on how the number of original phenotypes and recombinants can be used to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the chiasma determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions. The main task of the lesson acts as an understanding check where students are challenged to analyse a set of results involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene to determine whether they have loci on the same chromosome and if so, how close their loci would appear to be.
DNA replication (Edexcel A-level Biology A)
GJHeducationGJHeducation

DNA replication (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the key steps in the process of DNA replication, including the role of DNA polymerase. Both the detailed PowerPoint and accompanying resources have been designed to cover point 2.11 (i) of the Pearson Edexcel A-level Biology A specification and this lesson also explains why this replication is known as semi-conservative in order to prepare the students for the following lesson on Meselson and Stahl’s experiment. The main focus of this lesson is the role of DNA polymerase in the formation of the growing nucleotide strands but the students will also learn that the hydrogen bonds between nucleotide bases are broken by DNA helicase and that DNA ligase joins the nucleic acid fragments. Time is taken to explain key details, such as the assembly of strands in the 5’-to-3’ direction, so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure and hydrolysis reactions through a range of exam questions and answers are displayed so that any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
Structure & properties of starch, glycogen and cellulose (OCR A-level Biology)
GJHeducationGJHeducation

Structure & properties of starch, glycogen and cellulose (OCR A-level Biology)

(0)
This detailed and fully-resourced lesson describes the relationship between the structure, properties and functions of glycogen, starch and cellulose. The engaging PowerPoint and accompanying resources have been designed to cover specification points 2.1.2 (f) & (g) of the OCR A-level Biology A course and continual links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. The lesson begins with the CARBOHYDRATE WALL where students have to use their prior knowledge to collect the 9 carbohydrates on show into 3 groups. This results in glycogen, starch and cellulose being grouped together as polysaccharides and the structure, properties and functions of these large carbohydrates are covered over the course of the lesson. Students will learn how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also dictate whether the chain spirals or not. Following the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses and they learn more about starch and cellulose. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. The importance of the compact structure for storage is discussed as well as the branched chains of amylopectin acting as quick source of energy when it is needed. In the final part of the lesson, time is taken to focus on the hydrogen bonds between rotated glucose molecules on the same chain and between different chains and to explain how the formation of cellulose microfibrils and macrofibrils provides plant cells with the additional strength needed to support the whole plant. Due to the detail included in this lesson, it is estimated that it will take in excess of 2 hours of allocated teaching time to complete
Properties & roles of WATER (CIE A-level Biology)
GJHeducationGJHeducation

Properties & roles of WATER (CIE A-level Biology)

(0)
This lesson describes how the relationship between the different properties of water and its roles in living organisms. The engaging PowerPoint has been designed to cover specification point 2.3 (d) of the CIE International A-level Biology course. Hydrolysis reactions have been a recurring theme throughout topic 2, so the start of this lesson challenges the students to recognise the definition when only a single word is shown: water. Students will also recall the meaning of a condensation reaction. Moving forwards, the rest of the lesson focuses on the relationship between the structure and properties of water, beginning with its role as an important solvent. The lesson has been specifically written to make links to future topics and this is exemplified by the transport of water along the xylem in plants which is covered in topic 7. The next section focuses on the high latent heat of vaporisation and heat capacity of water and these properties are put into biological context using thermoregulation and the maintenance of a stable environment for aquatic animals. The lesson finishes with an explanation of the polar nature of water, a particularly important property that needs to be well understood for a number of upcoming topics, such as cell membranes.
Structure of eukaryotic (plant) cells (AQA A-level Biology)
GJHeducationGJHeducation

Structure of eukaryotic (plant) cells (AQA A-level Biology)

(0)
This lesson describes the relationship between the structure and function of the vacuole, chloroplast and cell wall, as found in plant cells. Additional structures, such as the nucleus and mitochondria, were covered in the previous lesson on the structure of eukaryotic animal cells and the detailed content of these two lessons has been designed in parallel to cover the main content of point 2.1.1 of the AQA A-level Biology specification. The lesson begins with a task called REVERSE GUESS WHO which will challenge the students to recognise a cell structure from a description of its function. This will remind students that plant cells are eukaryotic and therefore contain a cell-surface membrane, a nucleus (+ nucleolus), a mitochondria, a Golgi apparatus, ribosomes and rough and smooth endoplasmic reticulum like the animal cells. Moving forwards, the rest of the lesson focuses on the relationship between the structure and function of the vacuole, chloroplast and cellulose cell wall. When considering the vacuole, key structures such as the tonoplast are described as well as critical functions including the maintenance of turgor pressure. A detailed knowledge of the structure of the chloroplast at this early stage of their A-level studies will increase the likelihood of a clear understanding of photosynthesis when covered in topic 5. For this reason, time is taken to consider the light-dependent and light-independent reactions and to explain how these stages are linked. The final part of the lesson challenges the students on their knowledge of cellulose as a polysaccharide as previously covered in topic 1. In addition to the focus on plant cells, the presence of chloroplasts and a cell wall in algae and the latter in fungi is also described. The previous lesson which contains the content that ties in closely with this one has been uploaded under the title “Structure of eukaryotic (animal) cells”
Structure of cell membranes (AQA A-level Biology)
GJHeducationGJHeducation

Structure of cell membranes (AQA A-level Biology)

(0)
This detailed lesson describes the structure and properties of the cell membrane, focusing on the phospholipid bilayer and membrane proteins. Fully resourced, the PowerPoint and accompanying worksheets have been designed to cover the first part of point 2.3 of the AQA A-level Biology specification and clear links are made to Singer and Nicholson’s fluid mosaic model The fluid mosaic model is introduced at the start of the lesson so that it can be referenced at appropriate points throughout the lesson. Students were introduced to phospholipids in topic 1 and so an initial task challenges them to spot the errors in a passage describing the structure and properties of this molecule. This reminds them of the bilayer arrangement, with the hydrophilic phosphate heads protruding outwards into the aqueous solutions on the inside and the outside of the cell. In a link to some upcoming lessons on the transport mechanisms, the students will learn that only small, non-polar molecules can move by simple diffusion and that this is through the tails of the bilayer. This introduces the need for transmembrane proteins to allow large or polar molecules to move into the cell by facilitated diffusion and active transport. Proteins that act as receptors as also introduced and an opportunity is taken to make a link to an upcoming topic so that students can understand how hormones or drugs will bind to target cells in this way. Moving forwards, the structure of cholesterol is covered and students will learn that this hydrophobic molecule sits in the middle of the tails and therefore acts to regulate membrane fluidity. The final part of the lesson challenges the students to apply their newly-acquired knowledge to a series of questions where they have to explain why proteins may have moved when two cells are used and to suggest why there is a larger proportion of these proteins in the inner mitochondrial membrane than the outer membrane.
Simple & facilitated diffusion (AQA A-level Biology)
GJHeducationGJHeducation

Simple & facilitated diffusion (AQA A-level Biology)

(0)
This lesson describes the movement across cell membranes by simple and facilitated diffusion and describes how the rate is increased. The PowerPoint and accompanying resources have been designed to cover the second part of specification point 2.3 of the AQA A-level Biology course and the limitations imposed by the phospholipid bilayer and the role of channel and carrier proteins are described in detail. The structure and properties of cell membranes was covered in the previous lesson so this one has been written to include continual references to the content of these lessons. This enables links to be made between the movement across a cell membrane with the concentration gradient, the parts of the membrane that are involved and any features that may increase the rate at which the molecules move. A series of questions about the alveoli are used to demonstrate how a large surface area, a short diffusion distance and the maintenance of a steep concentration gradient will increase the rate of simple diffusion. One of two quick quiz rounds is then used to introduce temperature and size of molecule as two further factors that can affect simple diffusion. The remainder of the lesson focuses on facilitated diffusion and describes how transmembrane proteins are needed to move small, polar or large molecules from a high concentration to a lower concentration across a partially permeable membrane.
Diabetes mellitus Type I and II
GJHeducationGJHeducation

Diabetes mellitus Type I and II

(0)
This is a fast-paced lesson which uses a range of tasks and quick competitions to compare the diagnosis, symptoms and treatment of Diabetes mellitus Type I and II. Students are continually challenged throughout the lesson to build and deepen their knowledge of these conditions and consider how they can be controlled through hormone injections or lifestyle changes. Clear links are made to related topics such as auto-immune diseases and the endocrine system and progress checks have been written into the lesson to allow students to assess their understanding of all of these topics. The final part of the lesson involves the students writing a letter to an individual who has type II, explaining how this diagnosis was done, giving details of the condition and recommending lifestyle changes. This task is differentiated so that students who are finding it difficult can still access the learning. This lesson has been written for A-level students. If you are looking for a lesson for younger students on this topic, then my other upload “Diabetes Type I and II” will be more suitable.