A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This bundle of 7 lessons covers the majority of content in Topic B4(Community-level systems) of the OCR Gateway A GCSE Biology specification. The topics covered within these lessons include:
Ecosystems
Abiotic and biotic factors
Competition and interdependence
Efficiency of biomass transfer
The Carbon cycle
The Nitrogen cycle
Decomposers
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
A highly engaging lesson that looks at the structures that are found in the 1st line of defence and explores the methods of action use by phagocytes and lymphocytes. This lesson has been designed for GCSE students but could be used as an initial recap with A-level students before they go on to learn this topic in greater detail
The lesson begins by introducing the meaning of the 1st line of defence. A quick competition is used to challenge the students to recognise the names of some of these structures when their names have some letters missing. Time is taken to discuss the action of the cilia and skin and then students are challenged to make links to the related topics of enzymes and pH as they complete a passage about the role of hydrochloric acid in the stomach. Moving forwards, students will learn that there are two types of white blood cells, phagocytes and lymphocytes, and the details of their actions is explored. Key points such as the specificity of antibodies and the involvement of enzymes are discussed in detail so that this topic can be understood to the depth needed at this level. In addition to a number of games to maintain engagement, progress checks are written into this at regular intervals to allow the students to assess their understanding.
This is an engaging lesson which uses a range of tasks and quiz competitions to ensure that the important details about elements are embedded so that students can use them in related Chemistry topics. The lesson begins by looking at the chemical symbols that are used with the elements. Students do not have to know the symbols off by heart because of the widely available Periodic Table but a sound knowledge will always help going forward. Time is taken to ensure that students understand how the symbols have to be written so that those with two letters consist of a capital and a lower case letter. In a race against each other, students are challenged to complete a crossword by converting symbols to the name of elements. This will result in a winner, a second placed and a third placed student who can be given a gold, silver and bronze medal. The atoms within each of these medals is explored so that students can learn that the gold and silver medals will only be made up of one type of atom and are therefore elements whilst the bronze is an alloy. The remainder of the lesson looks at some of the uses of the different elements and a homework task gets students to put this into written form.
This lesson is suitable for both KS3 and GCSE students.
This bundle of 18 lessons covers the majority of the content in Topic C2 (Elements, compounds and mixtures) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include:
Elements
Electron configurations
Compounds
Chemical formula of ionic compounds
Ionic compounds
Covalent substances
Simple molecules
Polymers
Metallic bonding
Diamond and graphite
Graphene and the fullerenes
Changing states
Pure and impure substances
Distillation
Filtration and crystallisation
Chromatography
Interpreting chromatograms
Relative formula masses
Empirical formula
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This lesson looks at the two stages of protein synthesis, transcription and translation, and focuses on the key details that students need to understand this potentially difficult topic. The lesson presentation has been deliberately written in a concise way to encourage the students to summarise the two stages and pick out the key points which will enable them to form longer answers when necessary. The lesson begins by introducing the students to RNA, and a quick check is done to see how much they can recall about the other nucleic acid, DNA. Moving forwards, students are challenged to study the structure of DNA and RNA in SPOT THE DIFFERENCE before being challenged to explain why RNA is necessary in this process. Time is taken to look at important sections such as complimentary base pairing and the identification of amino acids from the codon. A number of quick competitions have been written into the lesson to maintain engagement and the progress checks are regular so that students assess their understanding and any misconceptions can be quickly identified and addressed.
This lesson has been written for GCSE students but should a teacher want to teach an introduction lesson on protein synthesis before going into more detail at a later date, then this would be suitable.
This bundle of 6 lessons covers the majority of the content in Topic C1 (Particles) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include:
States of matter
Chemical and physical changes
Development of the atom
Atomic structure
Isotopes
Ions
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 4 lessons covers the majority of the content in the sub-topic C2.3 (Properties of materials) of the OCR Gateway A GCSE Chemistry specification. The topics covered within these lessons include:
Allotropes of carbon
Changing state
Nanoparticles
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 4 lessons covers a lot of the content in Topic B6 (Plant structures and their functions) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include:
The photosynthesis reaction
The limiting factors of photosynthesis
The structure and function of the xylem and phloem
Transporting water and minerals by transpiration
Factors affecting the rate of transpiration
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 7 lessons covers the majority of the content in Topic B1 (Key concepts in Biology) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include:
Animal cells
Plant cells
Bacterial cells
Specialised cells
Changes in microscopic technology
Number, size and scale
The relationship between quantitative units
Enzyme properties and action
Enzyme activity
Osmosis
Active transport
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 7 lessons covers a lot of the content in Topic B5 (Health, disease and development of medicines) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include:
Health
The difference between communicable and non-communicable diseases
Pathogens
Common infections
The spread of diseases and the prevention
The spread of STIs
The physical and chemical defences of the human body
The use of antibiotics
Developing new medicines
Non-communicable diseases
Treating cardiovascular disease
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 7 lessons covers the majority of the content in the C1 sub-topic called CALCULATIONS INVOLVING MASSES of the Edexcel GCSE Combined Science & GCSE Chemistry specifications. The topics covered within these lessons include:
Calculating relative formula mass
Empirical formula
The law of the conservation of mass
Calculating masses in reactions
Calculating concentration of solutions
Avogadro’s constant
Mole calculations
Limiting reactants
Stoichiometry
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 6 lessons covers the majority of the content in Topic C2 (States of matter and mixtures) of the Edexcel GCSE Combined Science & GCSE Chemistry specifications. The topics covered within these lessons include:
Particle arrangement in the states of matter
Physical and chemical changes
Pure and impure substances
Separation methods
Paper chromatography
Interpreting a chromatogram
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 19 lessons covers the majority of the content in Topic C2 (Elements, compounds and mixtures) of the OCR Gateway A GCSE Chemistry specification. The topics covered within these lessons include:
Relative formula mass
Empirical formula
Pure and impure substances
Filtration and crystallisation
Distillation
Chromatography
Metals and non metals
Electronic structure
Forming ions
Ionic compounds
Simple molecules
Giant covalent structures
Polymer molecules
Metallic bonding
Allotropes of carbon
Graphene and the fullerenes
Changing state
Nanoparticles
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 16 lessons covers the majority of the content in Topic C5 (Monitoring and controlling chemical reactions) of the OCR Gateway A GCSE Chemistry specification. The topics covered within these lessons include:
Theoretical yield
Percentage yield
Atom economy
Concentration of solution
Titrations
Titration calculations
Gas calculations
Rates of reaction
The Collision theory
Temperature and the rate of reaction
Concentration and the rate of reaction
Particle size and the rate of reaction
Catalysts and the rate of reaction
Reversible reactions
Temperature and pressure and equilibrium
Choosing reaction conditions
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 9 lessons covers all of the content in Topic C3 (Quantitative Chemistry) of the AQA GCSE Chemistry specification. The topics covered within these lessons include:
Conservation of mass and balanced symbol equations
Relative formula mass
Mass changes when a reactant or product is a gas
Moles
Using moles to balance equations
Limiting reactants
Concentration of solutions
Percentage yield
Atom economy
Volumes of gases
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 12 lessons covers a lot of the content in Topic C5 (Separate Chemistry 1) of the Edexcel GCSE Chemistry specification. The topics covered within these lessons include:
The transition metals
Alloys
Concentration of solutions
Acid-alkali titration
Titration calculations
Calculating the percentage yield
Calculating the atom economy
Molar volume
The Haber Process
Factors and the position of equilibrium
Choosing reaction conditions
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This is an engaging lesson that looks at how vaccinations are used in medicine and considers how the introduction of these preventative measures has reduced the incidence of disease.
The lesson begins by introducing vaccinations as the deliberate exposure to antigenic material and then reminds students of the meaning of the term, antigen, so that they understand how this will elicit the desired immune response. Lots of opportunities for discussion have been written into the lesson so that key points such as how the vaccination is altered so that isn’t harmful and how memory cells work can be discussed amongst students before being clarified by the teacher and the lesson content. Moving forwards, students will be given some figures on child mortality rate in 1900 and 2000. They are shown how to manipulate this data in order to work out the percentage change. Students are then challenged to use these skills when comparing the children that were vaccinated for whooping cough in 1968 and 1995 and to make a link between vaccinations and mortality rates. These mathematical skills are being tested more and more in Biology so this guidance will help students to understand how to manipulate data when required. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding.
This lesson has been designed for GCSE aged students. If you’re looking for a lesson on this same topic but for older students at A-level, then my upload “Vaccinations (A-level)” will be more suitable
This is a concise, fast-paced lesson that introduces students to addition polymers and guides them through drawing displayed formulae to represent both the monomers and polymers involved in these reactions. Students will learn the conditions needed for these reactions and that the polymers produced by addition reactions are the only products. The main part of the lesson involves a step by step guide to show students how to draw displayed formulae. Hints are given throughout the process so that students can remember the key ideas and are able to represent these substances accurately. A number of progress checks have been written into the lesson so that students can assess their understanding any misconceptions can be addressed.
This lesson has been written for GCSE students
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic P3 (Particle model of matter) of the AQA Trilogy GCSE Combined Science specification.
The sub-topics and specification points that are tested within the lesson include:
Density of materials
Changes of state
Temperature changes in a system and specific heat capacity
Changes of heat and specific latent heat
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
This is a fully-resourced revision lesson that could be used over a series of lessons to help students to revise and assess their knowledge of the content in topics P1 (Matter), P2 (Forces) and P3 (Electricity and magnetism) of the OCR Gateway A GCSE Combined Science specifiction which can be assessed in paper 5. This revision lesson uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to cover the following sub-topics and specification points:
Describe how and why the atomic model has changed over time
Describe the structure of the atom and the charges of the particles
Define the term specific latent heat
Conversions from non S.I. units to S.I. units
Explain the vector-scalar distinction
Recall examples in which objects interact
Represent forces as vectors by drawing free-body diagrams
Know the definition of Newton’s three laws of motion
Define momentum and describe examples of momentum in collisions
Recall and apply Newton’s third law
Describe the relationship between force and the extension of a spring
Calculate the spring constant in linear cases
Define mass and weight
Recall that current depends upon both potential difference and resistance
Recall and apply the relationship between I, R and V
Show that Fleming’s left hand rule represents the relative orientations of current, magnetic field and force
This lesson contains a big emphasis on the mathematical calculations that will be involved in these exams, and as a result students are challenged to recall the equations and to apply them.
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams. A lot of the tasks have been differentiated so that students of all abilities can access the work and be challenged appropriately.