Hero image

GJHeducation's Shop

Average Rating4.50
(based on 909 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1158k+Views

1964k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Cell structure REVISION (Module 2.1.1)
GJHeducationGJHeducation

Cell structure REVISION (Module 2.1.1)

(0)
This revision lesson has been designed to be used with students when they finish module 2.1.1 or in the lead up to mock or final examinations. It consists of a 10 question multiple-choice assessment and a PowerPoint which contains the answers, related key points and additional questions to challenge content not directly covered by the multiple-choice questions. As cell structure in module 2.1.1 tends to be the 1st topic covered on the OCR A-level biology A course, a deep and full understanding of the content is critical for understanding of later topics and therefore this lesson acts to identify any errors or misconceptions immediately.
Glycolysis (WJEC A-level biology)
GJHeducationGJHeducation

Glycolysis (WJEC A-level biology)

(0)
This lesson describes glycolysis as the 1st stage of respiration and a source of triose phosphate, pyruvate, reduced NAD and ATP. The PowerPoint and accompanying resources have been designed to cover topic 3 point (b) of A2 unit 3 as detailed in the WJEC A-level biology specification. The lesson divides this multi-step reaction into 3 key parts, which are phosphorylation of glucose, the splitting into triose phosphate and then the oxidation of triose phosphate to produce pyruvate, reduced NAD and ATP. The difference between the gross and net gain of ATP from glycolysis is explained as well as the importance of the reduced NAD for the electron transport system or the conversion of pyruvate to lactate. As shown in the cover image, there are plenty of understanding checks to allow students to assess progress, and this includes several quick quiz rounds.
Electron transport system (WJEC)
GJHeducationGJHeducation

Electron transport system (WJEC)

(0)
This lesson describes the role of reduced NAD and FAD as sources of electrons and protons for the electron transport system. The PowerPoint has been designed to cover the content of topic 3 point (d) of A2 unit 3 as set out in the WJEC A-level biology specification and explains how ATP is produced by oxidative phosphorylation. The lesson begins with a recognition that the start of this stage doesn’t have a carbon-based molecule as was observed with the Krebs cycle. This leads into a discussion period, where the students are challenged to study their notes on glycolysis and the Krebs cycle to suggest which products of these reactions could initiate this stage. This introduces the reduced coenzymes as the sources of electrons and protons for the electron transport system, and as shown in the cover image, a step-by-step guide walks the students through the key parts of this stage. Students will learn about the creation of a proton gradient across the inner mitochondrial membrane and the formation of ATP and water when oxygen acts as the final electron acceptor. This lesson is a follow-on lesson from the previous lessons covering the Krebs cycle, glycolysis and the need for respiration.
Respiration (WJEC A2 unit 3, topic 3)
GJHeducationGJHeducation

Respiration (WJEC A2 unit 3, topic 3)

5 Resources
All 5 lessons included in this bundle are detailed and have been filled with a variety of tasks to maintain the engagement of the students whilst checking on their understanding of A2 unit 3, topic 3 of the WJEC A-level biology specification, which is titled “Respiration releases chemical energy in biological processes”. If you would like to see the quality of the lessons, download the glycolysis lesson 1st as this has been shared for free.
Edexcel A-level bio B TOPIC 1 REVISION
GJHeducationGJHeducation

Edexcel A-level bio B TOPIC 1 REVISION

(0)
This revision lesson uses a 20 question multiple-choice assessment to challenge the students on their knowledge and understanding of biological molecules. The answers to the 20 questions are embedded into the accompanying PowerPoint and this resource also contains summative KEY POINTS as well as additional questions (and answers) to challenge topic 1 content that wasn’t directly covered by the multiple-choice questions. At the bottom of each answer slide, the relevant specification code is displayed to allow students to identify the exact parts of the specification which need further attention. The lesson has been designed to be used with students once they finish topic 1, or in the lead up to mock or final A-level biology examinations.
Inorganic ions in plants (Edexcel B)
GJHeducationGJHeducation

Inorganic ions in plants (Edexcel B)

(0)
This lesson describes the roles of phosphate, calcium, magnesium and nitrate ions in plants. The PowerPoint and accompanying resources have been designed to cover the content of point 1.6 of the Edexcel A-level biology B specification. The lesson begins by challenging the students to recognise DNA, RNA and phospholipids from three clues, and then they are challenged to recognise that these three biological molecules all contain phosphate ions. Moving forwards, a quick quiz round introduces adenosine triphosphate (ATP) and the students will learn that this is a phosphorylated nucleotide which can be hydrolysed to ADP to release energy. Time is taken to explain how this energy can be coupled to processes within cells such as active transport and examples in plants including the absorption of mineral ions and active loading in the phloem are explored. The rest of the lesson describes the role of magnesium in the production of chlorophyll, nitrates to make DNA and amino acids and calcium ions to form calcium pectate in the middle lamellae. There are multiple understanding checks and also prior knowledge checks, where the students recall of the structure and function of haemoglobin is challenged.
Water & ions in plants (Edexcel Int.)
GJHeducationGJHeducation

Water & ions in plants (Edexcel Int.)

(0)
This lesson describes the importance of water and inorganic ions in plants. The PowerPoint and accompanying resources have been designed to cover the content of point 4.8 of the Edexcel International A-level biology specification, and includes details of the roles of nitrate, calcium and magnesium ions. In an earlier lesson, the students explored the relationship between the structure and function of the xylem vessel, so this lesson describes how the properties of water allow movement through the tissue. The students will understand how hydrogen bonds between water molecules leads to cohesion and this coupled with tension, causes the column of water to be pulled towards the leaves by the transpiration pull. Their knowledge and understanding of the role of water in hydrolysis and condensation reactions is challenged, before the role of water as a transport medium for multiple substances, including inorganic ions, is discussed. The rest of the lesson describes the role of magnesium in the production of chlorophyll, nitrates to make DNA and amino acids and calcium ions to form calcium pectate in the middle lamellae. There are multiple understanding checks and also prior knowledge checks, where the students recall of the structure and function of the vacuole and haemoglobin are challenged.
Water and ions in plants (Edexcel SNAB)
GJHeducationGJHeducation

Water and ions in plants (Edexcel SNAB)

(0)
This lesson describes the importance of water and calcium, magnesium and nitrate ions in plants. The PowerPoint and accompanying resources have been designed to cover the content of point 4.12 of the Pearson Edexcel A-level biology A (SNAB) specification. In the previous lesson, the students explored the relationship between the structure and function of the xylem vessel, so this lesson describes how the properties of water allow movement through the tissue. The students will understand how hydrogen bonds between water molecules leads to cohesion and this coupled with tension, causes the column of water to be pulled towards the leaves by the transpiration pull. Their knowledge and understanding of the role of water in hydrolysis and condensation reactions is challenged, before the role of water as a transport medium for multiple substances, including inorganic ions, is discussed. The rest of the lesson describes the role of magnesium in the production of chlorophyll, nitrates to make DNA and amino acids and calcium ions to form calcium pectate in the middle lamellae. There are multiple understanding checks and also prior knowledge checks, where the students recall of the structure and function of haemoglobin is challenged.
Chloroplast pigments (CIE A-level bio)
GJHeducationGJHeducation

Chloroplast pigments (CIE A-level bio)

(0)
This lesson describes the role of the chlorophylls, carotene and xanthophyll and explains how to interpret absorption and action spectra. The PowerPoint and accompanying resources have been designed to cover points 4 and 5 in topic 13.1 of the CIE A-level biology specification. The students are presented with a picture of a leaf with chlorosis at the start of the lesson and are challenged to explain the appearance by drawing on any knowledge from GCSE. The lesson has been intricately planned to build on the previous lesson on the structure of the chloroplast, and the students are reminded that chlorophyll is located in the thylakoids. The students will learn that there are two forms of chlorophyll a as well as a chlorophyll b, and a quick quiz round is used to reveal the values of 680 and 700. The absorption spectrum for chlorophyll a and b are displayed and when they are presented with a spectra, the students will discover that there are more chloroplast pigments. The carotenoids are introduced and the students have to interpret the spectra to reveal more details about these pigments. The meaning of an action spectrum is provided and the students are challenged to draw a sketch graph to show how the rate of photosynthesis differs for different wavelengths.