Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
A complete A Level Chemistry KS5 lesson including starter activity, main work task and answers on acid-base titration calculations
By the end of this lesson KS5 students should be able to:
To apply mole calculations to complete structured titration calculations, based on experimental results of familiar acids and bases.
To apply mole calculations to complete non-structured titration calculations, based on experimental results of non-familiar acids and bases
All tasks have worked out answers which will allow students to self assess their work in the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on the acid dissociation constant Ka
By the end of this lesson KS5 students should be able to:
To understand the acid dissociation constant, Ka, as the extent of acid dissociation
To know the relationship between Ka and pKa
To convert between Ka and pKa
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Mass Spectrometry in Organic Chemistry. Suitable for OCR AS Chemistry.
By the end of the lesson, students should be able to:
Use a mass spectrum of an organic compound to identify the molecular ion peak and hence to determine molecular mass
2)Perform analysis of fragmentation peaks in a mass spectrum to identify parts of structures
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Covalent and Dative Covalent Bonding
By the end of this lesson KS5 students should be able:
To know covalent bonding as electrostatic attraction between a shared pair of electrons and the nucleus
To construct dot and cross diagrams of molecules and ions to describe single and multiple covalent bonding
To apply the term average bond enthalpy as a measurement of covalent bond strength
To know what a dative covalent bond is
To construct dot and cross diagrams of molecules and ions to describe dative covalent bonding
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Carbon-13 NMR Spectroscopy
By the end of this lesson KS5 students should be able to:
To analyse a carbon-13 NMR spectrum of an organic molecule to make predictions about:
The number of carbon environments in the molecule
The different types of carbon environment present from chemical shift values
Possible structures for the molecule
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Metallic Bonding and Structure
By the end of this lesson KS5 students should be able to:
To describe the structure of metals
To explain metallic bonding as strong electrostatic attraction between cations and delocalised electrons
To explain the physical properties of giant metallic structures
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured Year 12 KS5 lesson including starter activity and AfL work tasks on Collision Theory and Rates of Reaction. Suitable for OCR Specification (AS Chemistry)
By the end of this lesson KS5 students should be able to:
To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions
To calculate the rate of reaction using the gradients of a concentration-time graph
To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity and mini AfL questions on calculating moles and the number of atoms/particles/molecules using the mole equation. Suitable for AQA GCSE Chemistry and Higher tier combined Science
The lesson begins with a short starter task (DO NOW) on previous KS4 knowledge about relative atomic mass of elements, calculating the relative molecular mass of compounds and balancing equations
By the end of this lesson KS4 students should be able to:
Describe the measurement of amounts of substance in moles
Calculate the number of moles in a given mass
Calculate the mass of a given number of moles
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A well structured lesson including starter activity and mini AfL questions on relative atomic mass and relative formula mass. Suitable for AQA GCSE Chemistry and Combined Science (higher tier and foundation)
The lesson begins with a short starter task (DO NOW) on understanding the numbers in the periodic table
By the end of this lesson KS4 students should be able to:
To identify the relative atomic mass of an element from the periodic table
To be able to define the term relative atomic mass
To calculate relative formula masses from atomic masses
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks with answers included on Standard Electrode & Cell Potentials (Part 1 of 2)
By the end of this lesson KS5 students should be able:
**To describe techniques and procedures used for the measurement of :
**i) Cell potentials of metals or non-metals in contact with their ions in aqueous solution
**ii) Ions of the same element in different oxidation states in contact with a Pt electrode
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson (Part 2 of 2) including starter activity, AfL work tasks and practice questions on Redox Titrations
**By the end of this lesson KS5 students should be able to:
**LO1: To describe the practical techniques and procedures used to carry out redox titrations for I2/S2O32-
LO2: To calculate structured titration questions based on experimental results of redox titrations involving I2/S2O32- and non familiar redox systems
LO3: To calculate non-structured titration questions based on experimental results of I2/S2O32-
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
5 Full Lesson Bundle which covers the lessons on aromatic compounds from the OCR A Level Chemistry Specification. See below for the lesson objectives
Lesson 1: Benzene and its Structure
To describe the Kekulé model of benzene
To describe the delocalised model of benzene in terms of P orbital overlap forming a delocalised π system
To compare the Kekulé model of benzene and the delocalised model of benzene
To explain the experimental evidence which supports the delocalised model of benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction
Lesson 2: Naming Aromatic Compounds
State the IUPAC name of substituted aromatic compounds
Construct the structure of aromatic compounds based on their IUPAC names
Analyse the correct numbering system for di and trisubstituted aromatic compounds
Lesson 3: The Reactions of Benzene
To understand the electrophilic substitution of aromatic compounds with:
(i) concentrated nitric acid in the presence of concentrated sulfuric acid
(ii) a halogen in the presence of a halogen carrier
(iii) a haloalkane or acyl chloride in the presence of a halogen carrier (Friedel–Crafts reaction) and its importance to synthesis by formation of a C–C bond to an aromatic ring
To construct the mechanism of electrophilic substitution in arenes
Lesson 4: Phenols
To recall and explain the electrophilic substitution reactions of phenol:
with bromine to form 2,4,6-tribromophenol
(ii) with dilute nitric acid to form a mixture of 2-nitrophenol and 4-nitrophenol
(j) To explain the relative ease of electrophilic substitution of phenol compared with benzene, in terms of electron pair donation to the π-system from an oxygen p-orbital in phenol
To understand the weak acidity of phenols shown by its neutralisation reaction with NaOH but absence of reaction with carbonates
Lesson 5: Directing Groups in Aromatic Compounds
To understand the 2- and 4-directing effect of electron- donating groups (OH, NH2) and the 3-directing effect of electron-withdrawing groups (NO2) in electrophilic substitution of aromatic compounds
To predict the substitution products of aromatic compounds by directing effects in organic synthesis
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A well structured KS5 Lesson on Phenols. The lesson contains a starter activity, mini AfL questions and practice questions, all with answers included
By the end of the lesson students should:
To recall and explain the electrophilic substitution reactions of phenol:
with bromine to form 2,4,6-tribromophenol
(ii) with dilute nitric acid to form a mixture of 2-nitrophenol and 4-nitrophenol
(j) To explain the relative ease of electrophilic substitution of phenol compared with benzene, in terms of electron pair donation to the π-system from an oxygen p-orbital in phenol
To understand the weak acidity of phenols shown by its neutralisation reaction with NaOH but absence of reaction with carbonates
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons,including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Two lesson bundle covering the three types of intermolecular forces for the OCR Specification (but also applicable to AQA and Edexcel specification)
Lesson 1: Intermolecular Forces (Part 1) covers London forces and Permanent Dipole-Dipole Interactions. In lesson 1 students will:
Understand intermolecular forces based on induced-dipole interactions and permanent dipole-dipole interactions
Explain how intermolecular forces are linked to physical properties such as boiling and melting points
Compare the solubility of polar and non-polar molecules in polar and non-polar solvents
Lesson 2: Intermolecular Forces (part 2) covers Hydrogen Bonding. In lesson 2 students will:
Understand hydrogen bonding as intermolecular forces between molecules containing N, O or F and the H atom of –NH, -OH or HF
Construct diagrams which illustrate hydrogen bonding
Explain the anomalous properties of H2O resulting from hydrogen bonding
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on proton NMR Spectroscopy (part 2)
NOTE: This lesson can be purchased as a bundle with proton NMR Spectroscopy (part 1)
By the end of this lesson KS5 students should be able to:
To analyse proton NMR spectra of an organic molecule to make predictions about:
The different types of proton environment present from chemical shift values
The relative numbers of each type of proton present from the relative peak areas using integration traces or ratio numbers when required
The number of non-equivalent protons adjacent to a given proton from the spin-spin splitting pattern, using the n+1 rule
Possible structures for the molecule
2 Bonus Questions on Combined Techniques are also included in this lesson!
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
4 Full Lesson Bundle which covers the lessons on carbonyl compounds, carboxylic acids, esters and acyl chlorides from the OCR A Level Chemistry Specification. See below for the lesson objectives
Lesson 1: Reactions of Carbonyl Compounds
To understand the oxidation of aldehydes using Cr2O72-/H+ to form carboxylic acids
To understand nucleophilic addition reactions of carbonyl compounds with:
NaBH4 to form alcohols
HCN (NaCN (aq)/H+ (aq)) to form hydroxynitriles
To construct the mechanism for nucleophilic addition reactions of aldehydes and ketones with NaBH4 and HCN
Lesson 2: Testing for Carbonyl Compounds
To understand the use of Tollens’ reagent to:
(i) detect the presence of an aldehyde group
(ii) distinguish between aldehydes and ketones, explained in terms of the oxidation of aldehydes to carboxylic acids with reduction of silver ions to silver
To understand the use of 2,4-dinitrophenylhydrazine to:
(i) detect the presence of a carbonyl group in an organic compound
(ii) identify a carbonyl compound from the melting point of the derivative
Lesson 3: Carboxylic acids and Esters
To explain the water solubility of carboxylic acids in terms of hydrogen bonding
To recall the reactions in aqueous conditions of carboxylic acids with metals and bases (including carbonates, metal oxides and alkalis)
To know the esterification of: (i) carboxylic acids with alcohols in the presence of an acid catalyst (ii) acid anhydrides with alcohols
To know the hydrolysis of esters: (i) in hot aqueous acid to form carboxylic acids and alcohols (ii) in hot aqueous alkali to form carboxylate salts and alcohols
Lesson 4: Acyl Chlorides and Their Reactions
To know how to name acyl chlorides
To recall the equation for the formation of acyl chlorides from carboxylic acids using SOCl2
To construct equations for the use of acyl chlorides in the synthesis of esters, carboxylic acids and primary and secondary amides
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
20 well structured chemistry lessons covering topics in Module 4 of the OCR Specification: **Core Organic Chemistry **
*(Note: Lessons on Analytical techniques: IR and Mass spectroscopy are sold as a separate bundle in my shop) *
Lesson 1: Organic and Inorganic Compounds
To describe what organic and inorganic compounds are
2 To compare the strength of bonds in organic and inorganic compounds
To explain the molecular shape of carbon containing compounds
Lesson 2: Naming organic compounds
To know the IUPAC rules for naming alkanes and alkenes
To know the IUPAC rules for naming aldehyde, ketones and carboxylic acids
To construct structural or displayed formulae from named organic compounds and name organic compounds from the structural or displayed formulae
Lesson 3: Types of formulae
To know what is meant by the terms empirical and molecular formula
To compare the terms general, structural, displayed and skeletal formula
To construct organic compounds using either of the 6 types of formulae
Lesson 4: Isomers
To describe what structural isomers and stereoisomers are
To construct formulae of structural isomers of various compounds
To construct formulae of E-Z and cis-trans stereoisomers of alkenes
Lesson 5: Introduction To Reaction Mechanisms
To understand that reaction mechanisms are diagrams that illustrate the movement of electrons using curly arrows
To understand where curly arrows being and where they end
To identify and illustrate homolytic and heterolytic bond fission in reaction mechanisms
Lesson 6: Properties of Alkanes
To know alkanes are saturated alkanes containing sigma (σ)bonds that are free to rotate
To explain the shape and bond angle round each carbon atom in alkanes in terms of electron pair repulsion
To describe and explain the variations in boiling points of alkanes with different carbon chain lengths and branching in terms of London forces
Lesson 7: Combustion of Alkanes
To understand why alkanes are good fuels
To recall the equations (both word and symbol) for complete combustion of alkanes
To recall the equations (both word and symbol) for incomplete complete combustion of alkanes
Lesson 8: Free Radical Substitution of Alkanes
To know what a free radical is
To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination
To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products
Lesson 9: The Properties of Alkenes
1.To know the general formula of alkenes
2. To explain the shape and bond angle around each carbon atom of a C=C bond
3. To describe how π and σ bonds are formed in alkenes
Lesson 10: Addition Reactions of Alkenes
To know what an electrophile is
To describe what an electrophilic addition reaction is
To outline the mechanism for electrophilic addition
Lesson 11: Addition Polymerisation
To know the repeat unit of an addition polymer deduced from a polymer
To identify the monomer that would produce a given section of an addition polymer
To construct repeating units based on provided monomers
Lesson 12: Dealing with Polymer Waste
To understand the benefits for sustainability of processing waste polymers by:
Combustion for energy production
Use as an organic feedstock for the production of plastics and other organic chemicals
Removal of toxic waste products such as HCl
To understand the benefits to the environment of development of biodegradable and photodegradable polymers
Lesson 13: Properties of Alcohols
To identify and explain the intermolecular forces that are present in alcohol molecules
To explain the water solubility of alcohols, their low volatility and their trend in boiling points
To classify alcohols as primary, secondary or tertiary alcohols
Lesson 14: Oxidation of Alcohols
To know that alcohols can undergo combustion reactions in the presence of oxygen
To know alcohols can be oxidised by an oxidising agent called acidified potassium dichromate
To know the products and reaction conditions for the oxidation of primary alcohols to aldehydes and carboxylic acids
To know the products and reaction conditions for the oxidation of secondary alcohols to ketones
Lesson 15: Other Reactions of Alcohols
To know the elimination of H2O from alcohols in the presence of an acid catalyst and heat to form alkenes
To know the substitution of alcohols with halide ions in the presence of acid to form haloalkanes
Lesson 16: Haloalkanes and their Reactions (part 1)
To define and use the term nucleophile
To outline the mechanism for nucleophilic substitution of haloalkanes
Lesson 17: Haloalkanes and their Reactions (part 2)
To explain the trend in the rates of hydrolysis of primary haloalkanes in terms of the bond enthalpies of carbon-halogen bonds
To describe how the rate of hydrolysis of haloalkanes can be determined by experiment using water, ethanol and silver nitrate solution
Lesson 18: Haloalkanes and the environment
To know how halogen radicals are produced from chlorofluorocarbons (CFCs) by the action of UV radiation
To construct equations for the production of halogen radicals from CFCs
To construct equations for the catalysed breakdown of ozone by Cl. and other radicals (NO.)
Lesson 19: Practical skills for organic synthesis
To demonstrate knowledge, understanding and application of the use of Quickfit apparatus for distillation and heating under reflux
To understand the techniques for preparation and purification of an organic liquid including:
Lesson 20: Synthetic routes in organic synthesis
To identify individual functional groups for an organic molecule containing several functional groups
To predict the properties and reactions of an organic molecule containing several functional groups
To create two-stage synthetic routes for preparing organic compounds
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on the pH of weak acids
By the end of this lesson KS5 students should be able to:
To recall the expression of pH for weak monobasic acids
To calculate the pH of weak monobasic acids using approximations
To analyse the limitations of using approximations to Ka related calculations for ‘stronger’ weak acids
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Combined Techniques. Suitable for OCR AS Chemistry.
By the end of the lesson, students should be able to:
1)To apply combined spectroscopic techniques (IR spectroscopy, mass spectrometry and elemental analysis) to identify the structures of unknown compounds
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson (Yr13) including starter activity, discussion questions, videos and main work task all with answers included on Practical Skills for Organic Synthesis II. Suitable for the OCR specification.
By the end of this lesson KS5 students should be able to:
To describe the techniques and procedures used for the purification of organic solids including:
filtration under reduced pressure
recrystallisation
measurement of melting points
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above