A revision session containing a mind map (with guidance and without).
A Powerpoint containing a quiz session (10 questions) - excellent for a starter / plenary.
Answers to each section of the mind map within the Powerpoint.
By the end of the lesson learners should be able to:
Identify word and chemical equations.
Describe how to write a chemical and word equation.
Compare word and chemical equations.
By the end of the lesson learners should be able to:
Identify 3 elements from a single group.
Identify 3 elements from a single period.
Describe how elements are grouped.
Explain why the periodic table is set out in the order that it is.
A comprehensive lesson which teaches students about how salts can be made by reacting a metal oxide and base. Students will be able to name salts or determine the reactants that form them, balance equations regarding salts and for a high ability stretch use moles in order to calculate the needed masses of reactants to react completely.
Progress checks are available following each success criteria
Tasks are differentiated to suit the needs of each learner.
Learning objective: Justify how specific salts can be synthesised with reference to amounts.
By the end of the lesson learners should be able to:
Success criteria:
Identify the products / reactants of an acid-base reaction.
Describe how to balance equations.
Explain why equations must be balanced.
Powerpoint contains 21 slides.
Some prior information is needed for understanding chemical formulae in the later parts of the lesson.
By the end of the lesson learners should be able to:
Identify the products and reactants of combustion.
Describe how to affect the rate of combustion.
Explain why combustion must be controlled.
By the end of the lesson learners should be able to:
Identify word and chemical equations.
Describe how to write a chemical and word equation.
Compare word and chemical equations.
By the end of the lesson learners should be able to:
Use groups and periods to identify specific elements.
Describe how elements are placed in the periodic table.
Compare the older version which included gaps with the modern periodic table.
Learning Objectives:
To understand that distillation can be used to separate a liquid from the solids, which are dissolved in it.
To explain how distillation occurs.
To explain how Condenser works to distill a solvent from a solution.
By the end of this lesson learners should be able to:
Identify substances that can diffuse.
Describe how particles move during diffusion.
Explain why temperature affects the rate of diffusion.
By the end of the lesson learners should be able to:
Identify what is meant by oxidation and reduction.
Describe how halogens and metals react during displacement reactions.
Explain why transitions metals can bond to many different atoms.
By the end of this lesson I will be able to:
write the chemical names for some simple compounds
write and interpret chemical formulae.
I will be working scientifically to:
understand and use official chemical names.
By the end of the lessons learners should be able to:
Identify the 4 bonding models.
Describe the properties of each bonding model.
Compare the features of each bonding model.
By the end of the lesson learners should be able to:
Identify fullerenes, monomers and polymers.
Describe the structure of fullerenes and polymers.
Explain the properties of fullerenes and why polymers can have different properties.
By the end of this lesson I will be able to:
use the particle model to explain changes involving solids, liquids and gases.
interpret data about changing states.
I will be working scientifically to:
interpret my data.
A comprehensive lesson which teaches students about the noble gases and their chemical properties. There are links to KS4 included where students explain the reasoning for being non-reactive in relation to the electron shells.
Learning objective: To explore the trends seen in group 0 and explain their reactivity.
By the end of the lesson learners should be able to:
Identify Noble gases.
Describe the properties of Noble gases.
Explain why Noble gases are used for double glazing and Neon Lights.
Suitable for KS3 (yrs 11-14) and KS4 (yrs 14-16) Slides are marked.
10 slides are included in the powerpoint.
By the end of the lesson learners should be able to:
Identify the main components of the early and late atmosphere.
Describe how the atmosphere changed over the years.
Explain why scientists believe the atmosphere changed in this way.
By the end of the lesson learners should be able to:
Recall the equation to calculate rate of reaction.
Describe how to read a products made / time graph.
Explain why the gradient of the line can change because of external factors. E.g. temperature rise.
By the end of the lesson learners should be able to:
Identify what is meant by the rate of a reaction.
Describe how to measure the rate of reaction.
Explain why the method of using a mark at the bottom of a beaker is not a perfect way of measuring reaction rate.
By the end of the lesson learners should be able to:
Identify long and short chain hydrocarbons.
Describe the process of cracking.
Explain why companies would use cracking.