Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Mass Spectroscopy. Suitable for OCR AS Chemistry
By the end of this lesson KS5 students should be able to:
To determine the relative atomic masses and relative abundances of the isotope using mass spectroscopy
To calculate the relative atomic mass of an element from the relative abundances of its isotope
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on moles and volumes (solutions and gas volumes)
By the end of the lesson students should be able to:
To calculate the amount of substance in mol, involving solution volume and concentration
To understand the terms dilute, concentrated and molar
To explain and use the term molar gas volume
To calculate the amount of substance in mol, involving gas volume
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and lesson slides on Addition Polymerisation of Alkenes. This lesson follows the OCR specification.
**By the end of the lessons students should be able:
**1. To know the repeat unit of an addition polymer deduced from a polymer
**2. To identify the monomer that would produce a given section of an addition polymer
**3. To construct repeating units based on provided monomers
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
6 Full Lesson Bundle covering the first 6 chapters in the OCR A Level Chemistry Chapter on Energy
Lesson 1: Lattice Enthalpy
**By the end of the lesson students will:
Explain the term lattice enthalpy
Understand the factors that determine the size of lattice enthalpy
Explain the terms standard enthalpy change of formation and first ionisation energy**
Lesson 2: Born-Haber Cycles
**By the end of the lesson students will:
**1. Construct Born Haber Cycle diagrams for ionic compounds from enthalpy change values
**2. Calculate the value for lattice enthalpy from Born Haber Cycle diagrams
**3. Calculate other enthalpy change values from Born Haber Cycle diagrams
Lesson 3: Enthalpy Changes of Solution & Hydration
**By the end of the lesson students will:
**1. Define the terms enthalpy change of solution and hydration
**2. Construct enthalpy cycles using the enthalpy change of solution of a simple ionic solid
3. Qualitatively explain the effect of ionic charge and ionic radius on the exothermic value of lattice enthalpy and enthalpy change of hydration
Lesson 4: Entropy
**By the end of lesson students will:
**1. Know that entropy is a measure of the dispersal of energy in a system, which is greater the more disordered a system
**2. Explain the difference in entropy of solids, liquids and gases
**3. Calculate the entropy change of a reactant based on the entropies provided for the reactants and products
Lesson 5: Gibbs Free Energy (Part 1)
**By the end of the lesson students will:
**1. Explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system
**2. Recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or T
**3.Calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation
Lesson 6: Gibbs Free Energy (Part 2)
By the end of the lessons students will:
1. Explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system
2. Recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or 3. Calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation
The teacher will be able to check students have met these learning objectives through starter activities, discussion questions, mini AfL tasks and practice questions for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
7 Full Lesson Bundle + A Bonus Revision Lesson which covers the Kinetics (How Fast?) chapters from the OCR A Level Chemistry Specification (also suitable for the AQA and Edexcel Spec- see Learning Objectives below)
Lesson 1: Order of Reactants
Lesson 2: The Rate Equation
Lesson 3&4 Concentration-Time Graphs
Lesson 5: Initial Rates and Clock Reactions
Lesson 6: The Rate Determining Step
Lesson 7: The Arrhenius Equation
Lesson 8: Revision Lesson
Learning Objectives:
Lesson 1:
LO1: To recall the terms rate of reaction, order, overall order and rate constant
LO2: To describe how orders of reactants affect the rate of a reaction
LO3: To calculate the overall order of a reaction
Lesson 2:
LO1: To determine the order of a reactant from experimental data
LO2: To calculate the rate constant, K, from a rate equation
LO3: To calculate the units of the rate constant
Lesson 3&4:
LO1: To know the techniques and procedures used to investigate reaction rates
LO2: To calculate reaction rates using gradients from concentration-time graphs
LO3: To deduce zero & first order reactants from concentration-time graphs
LO4: To calculate the rate constant of a first order reactant using their half-life
Lesson 5:
LO1: To determine the rate constant for a first order reaction from the gradient of a rate- concentration graph
LO2: To understand how rate-concentration graphs are created
LO3: To explain how clock reactions are used to determine initial rates of reactions
Lesson 6:
LO1: To explain and use the term rate determining step
LO2: To deduce possible steps in a reaction mechanism from the rate equation and the balanced equation for the overall reaction
LO3: To predict the rate equation that is consistent with the rate determining step
Lesson 7:
LO1: Explain qualitatively the effect of temperature change on a rate constant,k, and hence the rate of a reaction
LO2: To Know the exponential relationship between the rate constant, k and temperature, T given by the Arrhenius equation, k = Ae–Ea/RT
LO3: Determine Ea and A graphically using InK = -Ea/RT+ InA derived from the Arrhenius equation
Lesson 8:
This is an engaging KS5 revision lesson the Kinetics topic in A Level Chemistry (Year 13)
Students will be able to complete three challenging question rounds on kinetics covering:
Measuring Reaction Rates
Orders of reactants
Concentration-time graphs
Rate-concentration graphs
Clock Reactions
Initial rates
Arrhenius Equation
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Transition Metals & Complex Ions
**By the end of this lesson KS5 students should be able to:
To explain and use the term ligand in terms of dative covalent bonding to a metal ion or metal, including bidentate ligands
To use the terms complex ion and coordination number
To construct examples of complexes with:
(i) six-fold coordination with an octahedral shape
(ii) four-fold coordination with either a planar or tetrahedral shape
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson.
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Whole lesson on planning for the AQA KS5 chemistry required practical 1 - how to make up a volumetric solution and how to carry out an acid-base titration
In this lesson the teacher will be able to:
address the aims of the required practical
address what key practical skills will be assessed
How students should carry out the practical
How students should record results and make observations
Post experimental quesitons are also included which will allow students to determine the unknown concentration of the base and to also consider issues with error in the experiment
It’s recommended that the teacher carries out a demonstration during this lesson or has the equipment pieces on display for students to see
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Covalent and Dative Covalent Bonding
By the end of this lesson KS5 students should be able:
To know covalent bonding as electrostatic attraction between a shared pair of electrons and the nucleus
To construct dot and cross diagrams of molecules and ions to describe single and multiple covalent bonding
To apply the term average bond enthalpy as a measurement of covalent bond strength
To know what a dative covalent bond is
To construct dot and cross diagrams of molecules and ions to describe dative covalent bonding
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity and mini AfL questions on calculating moles and the number of atoms/particles/molecules using the mole equation. Suitable for AQA GCSE Chemistry and Higher tier combined Science
The lesson begins with a short starter task (DO NOW) on previous KS4 knowledge about relative atomic mass of elements, calculating the relative molecular mass of compounds and balancing equations
By the end of this lesson KS4 students should be able to:
Describe the measurement of amounts of substance in moles
Calculate the number of moles in a given mass
Calculate the mass of a given number of moles
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Well structured KS5 Lesson on the introduction to reaction mechanisms in organic chemistry for Year 12 students. The lesson contains starter activities, discussion questions and mini AfL quizzes and questions, all with answers included
By the end of the lesson students should:
Understand that reaction mechanisms are diagrams that illustrate the movement of electrons using curly arrows
Understand where curly arrows being and where they end
Identify and illustrate homolytic and heterolytic bond fission in reaction mechanisms
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
6 Well Structured Lessons + BONUS Required Practical Lesson on Making Salts from the AQA Specification on Chemical Changes. This bundle is suitable for students studying GCSE Chemistry or Higher Tier Combined Science
The Following Lessons are included
Lesson 1: Reactivity Series and Metal Extraction
Deduce an order of reactivity of metals based on experimental results
Explain reduction and oxidation by loss or gain of oxygen
Explain how the reactivity is related to the tendency of the metal to form its positive ion
Lesson 2: Oxidation and Reduction (in terms of electrons)
write full ionic equations for displacement reactions
Write half equations for displacement reactions
identify in a half equation which species are oxidised or reduced
Lesson 3: Reactions of Metals and Acid
Describe how to make salts from metals and acids
Construct word equations from metal and acid reactions
Write full balanced symbol equations for making salts
Lesson 4: Metal Oxides
Identity that metals react with oxygen to form metal oxides
Explain reduction and oxidation by loss or gain of oxygen
Identify metal oxides as bases or alkalis
Lesson 5: pH and Neutralisation
State the ionic equation involved in neutralisation reactions
Describe the use of a universal indicator to measure pH changes
Compare acid strength and concentration
Lesson 6: Electrolysis of Ionic Compound
Know what electrolysis is and to state its uses
Explain how electrolysis works
Predict the reactions that occur at each electrode
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson (Part 1 of 2) including starter activity, AfL work tasks and practice questions on Redox Titrations
**By the end of this lesson KS5 students should be able to:
**LO1: To understand what a redox titration is.
LO2: To describe the practical techniques and procedures used to carry out redox titrations involving Fe2+ /MnO4-
LO3: To calculate structured titration questions based on experimental results of redox titrations involving Fe2+ /MnO4- and its derivatives
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson (lesson 1 of 2) including starter activity, AfL work tasks and practice questions with answers on Redox Reactions. Suitable for Year 13 OCR A Level Chemistry
**By the end of this lesson KS5 students should be able to:
LO1: To identify the oxidation numbers of elements in ions and compounds
LO2: To construct half-equations from redox equations
LO3: To explain and use the terms oxidising agent and reducing agent
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks on the reactivity series and metal extraction. Suitable for AQA GCSE Chemistry and Combined Science (higher and foundation)
By the end of this lesson KS4 students should be able to:
Deduce an order of reactivity of metals based on experimental results
Explain reduction and oxidation by loss or gain of oxygen
Explain how the reactivity is related to the tendency of the metal to form its positive ion
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks, main work tasks with answers on **The Equilibrium Constant Kc (Part 1) - AS OCR Chemistry (Year 12) **
*Note: A full lesson on the Equilibrium Constant Kc (Part 2) -A Level OCR Chemistry (Year 13) is also available *
By the end of the lesson students should be able to:
To construct expressions for the equilibrium constant Kc for homogeneous reactions
To calculate the equilibrium constant Kc from provided equilibrium concentrations
To estimate the position of equilibrium from the magnitude of Kc
To know the techniques and procedures used to investigate changes to the position of equilibrium for changes in concentration and temperature
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
3 Full Lesson Bundle on Carbon-13 and Proton NMR Spectroscopy. Suitable for the OCR A Level Chemistry specification. Please review the learning objectives below.
Lesson 1: Carbon-13 NMR Spectroscopy
To analyse a carbon-13 NMR spectrum of an organic molecule to make predictions about:
i) The number of carbon environments in the molecule
ii) The different types of carbon environment present from chemical shift values
iii) Possible structures for the molecule
Lesson 2: Proton NMR Spectroscopy (Part 1)
To analyse proton NMR spectra of an organic molecule to make predictions about:
i) The number of proton environments in the molecule
ii) The different types of proton environment present from chemical shift values
Lesson 3: Proton NMR Spectroscopy (Part 2)
To analyse proton NMR spectra of an organic molecule to make predictions about:
i) The different types of proton environment present from chemical shift values
ii) The relative numbers of each type of proton present from the relative peak areas using integration traces or ratio numbers when required
iii) The number of non-equivalent protons adjacent to a given proton from the spin-spin splitting pattern, using the n+1 rule
iv) Possible structures for the molecule
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured theory lesson including starter activity and main work tasks all with answers on Qualitative Analysis of Ions
By the end of this lesson KS5 students should be able to:
To carry out test tube reactions and record observations to determine the presence of the following anions : CO32- SO42- , Cl-, Br-, and I-
To carry out test tube reactions and record observations to determine the presence of the following cations: NH4+, Fe2+, Fe3+, Mn2+ and Cu2+
To construct ionic equations to explain the qualitative analysis tests of cations and anions
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Carbon-13 NMR Spectroscopy
By the end of this lesson KS5 students should be able to:
To analyse a carbon-13 NMR spectrum of an organic molecule to make predictions about:
The number of carbon environments in the molecule
The different types of carbon environment present from chemical shift values
Possible structures for the molecule
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A well structured lesson including starter activity and lesson slides on mass changes when gases are in reactions. Suitable for AQA GCSE Chemistry and combined science (higher and foundation)
The lesson begins with a short starter task (DO NOW) on gases in reactions
Then by the end of this lesson KS4 students should be able to:
To relate mass, volume and concentration
To calculate the mass of solute in solution
To relate concentration in mol/dm3 to mass and volume
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Enthalpy Change of Hydration & Soluton
By the end of this lesson KS5 students should be able to:
To define the terms enthalpy change of solution and hydration
To construct enthalpy cycles using the enthalpy change of solution of a simple ionic solid
To qualitatively explain the effect of ionic charge and ionic radius on the exothermic value of lattice enthalpy and enthalpy change of hydration
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above