Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Learning objectives:
Describe the process involved in genetic engineering.
Apply knowledge of the process of genetic engineering to explain how certain crops have been genetically modified.
Evaluate the potential benefits and risks of GM crops.
This comprehensive PowerPoint presentation, is an engaging teaching resource designed for chemistry students to master the concept of the mole. The lesson begins with a clear definition of what a mole represents in chemistry and its importance for understanding substances at the atomic level. Using Avogadro’s constant, students will explore the numerical value of a mole (6.02 x 10²³) and its real-world applications.
The resource includes visually appealing slides, interactive starter activities, and step-by-step problem-solving examples to reinforce key learning objectives. Activities challenge students to calculate moles, mass, and the relative atomic or formula mass of elements and compounds. Exercises range from balancing equations to solving mole problems of varying difficulty, catering to learners at different levels.
Additionally, the presentation integrates external resources like the educational video “Just How Small Is an Atom?” to enhance understanding. The included questions are fully solved, offering both guided practice and self-assessment opportunities.
This resource is ideal for classroom instruction or independent study. It is suitable for GCSE-level students or equivalent and aligns with chemistry curriculum standards. The file format is a PowerPoint (.pptx), ensuring compatibility with most educational devices and software. Perfect for teachers seeking a dynamic way to explain the mole concept and for students aiming to strengthen their foundational chemistry knowledge.
Describe the difference between speed and velocity.
Calculate the acceleration of an object using the change in velocity and time.
Rearrange the acceleration equation to calculate change in velocity or time.
PowerPoint that covers GCSE smoking. This is for a KS4 GCSE class.
Learning objectives:
Describe the effects of the harmful substances found in tobacco.
Describe the effect of smoking on unborn babies.
Includes questions, answers, a short comprehension and a video.
PowerPoint that covers generating electricity by combusting fossil fuels. Includes how fossil fuels are formed, what we use them for, how electricity is generated and the advantages and disadvantages. This is made for a KS3 level class.
The starter activity revisits efficiency and power from previous lessons to enhance memory recall.
This engaging PowerPoint lesson is designed to help students master the fundamental concepts of ionic compounds. Perfect for secondary school chemistry classes, it features clear explanations, practical examples, and interactive tasks that align with key curriculum standards.
What’s Covered:
Understanding Ionic Compounds:
Explore the formation of ionic compounds and deduce their chemical formulae using examples like magnesium oxide and potassium chloride.
Learn about polyatomic ions, including sulphate and nitrate.
Ionic Bonding and Lattices:
Examine the arrangement of ions in giant ionic lattices, focusing on sodium chloride’s 3D structure.
Compare various models (2D, 3D, ball-and-stick, dot-and-cross), discussing their advantages and limitations.
Learning Objectives:
Deduce the formula of common ionic compounds.
Represent ionic structures with models and diagrams.
Understand the limitations of different representational methods.
Interactive Activities:
Starter questions and practice problems for deducing chemical formulae.
Creative tasks like building ionic lattices with molymod kits.
Exam-style questions to consolidate understanding.
Why This Resource?
Aligned with secondary school chemistry curricula, ensuring comprehensive coverage.
Flexible usage: Ideal for guided lessons, homework, or revision.
Promotes active learning through hands-on activities and real-world applications.
File Type: PowerPoint (.pptx)
Updated: December 2024 – Includes additional examples, enhanced visuals, and video integration for interactive learning.
This resource is an excellent choice for teachers looking to make the topic of ionic compounds both accessible and engaging for their students!
This engaging PowerPoint presentation on Metallic Bonding provides an in-depth exploration of how metal atoms bond and the resulting properties of metals. It offers a complete lesson plan for secondary school students, including clear learning objectives, interactive starter activities, and comprehensive content explanations. Key topics include the definition of metallic bonding, the concept of delocalized electrons, the formation of giant lattices, and the physical properties of metals such as malleability, ductility, conductivity, and high melting/boiling points.
Designed to align with chemistry curricula, the resource also introduces alloys, explaining their composition, properties, and the science behind their hardness compared to pure metals. Students are encouraged to apply their understanding through review questions, practical examples, and opportunities to draw diagrams. This resource demystifies concepts such as the sea of delocalized electrons and their role in the unique characteristics of metals.
Perfect for teachers and students, this PowerPoint (.pptx file) is editable, making it easy to tailor to specific classroom needs. Updated recently to enhance usability and content accuracy, this resource is suitable for lessons, revision, or independent study. It is particularly useful for visual learners, with detailed diagrams and examples that bring the topic to life.
Whether used for classroom instruction or exam preparation, this presentation provides a robust foundation in understanding metallic bonding and its applications.
This resource bundle offers six meticulously crafted lessons to help students excel in quantitative chemistry. Designed for secondary school learners, it provides clear explanations, practical examples, and interactive activities, making it ideal for teaching, independent study, or revision.
What’s Included:
Conservation of Mass:
Explore how mass remains unchanged during chemical reactions. Practical examples and engaging exercises ensure students grasp this core principle.
Ar, Mr, and Calculating Percentage Mass of an Element in a Compound:
Learn to calculate relative atomic mass (Ar) and molecular mass (Mr), and determine the percentage composition of elements within compounds.
The Mole and Calculations Involving Mass, Moles, and Molar Mass:
Simplify the concept of the mole with worked examples that show how to calculate the mass, number of moles, and Ar/Mr, supported by ample practice questions.
Reacting Masses in Equations:
Use balanced chemical equations to determine the masses of reactants and products, connecting theory with real-world applications.
Counting Atoms, Writing, and Balancing Equations:
Help students confidently write and balance chemical equations while understanding the role of coefficients and subscripts in counting atoms.
Concentration of Solutions:
Dive into solution chemistry with lessons on calculating concentration, mass, and volume, supported by examples and real-life contexts like dilutions and mixing solutions.
Why Choose This Bundle?
Each lesson includes starter activities, exam-style questions, and step-by-step worked examples.
Topics are aligned with GCSE chemistry curricula, ensuring comprehensive coverage of key quantitative skills.
Flexible usage: Perfect for guided teaching, revision sessions, or targeted intervention.
File Type: PowerPoint (.pptx)
Updated: December 2024 – New lessons on concentration and balancing equations have been added.
Equip your students with the tools they need to confidently tackle quantitative chemistry and achieve success in their exams and beyond!
Lesson 1 Counting Atoms, Writing Equations and Balancing Equations
Lesson 2 - Conservation of Mass
Lesson 3 - Ar, Mr and Calculating % Mass of an Element in a Compound
Lesson 4 - The Mole and Calculating Number of Moles, Mass or Ar/Mr
Lesson 5 - Reacting Masses in Equations
Lesson 6 - Concentration of Solutions
This interactive PowerPoint presentation, provides a thorough introduction to the law of conservation of mass for chemistry students. Designed for GCSE-level learners or equivalent, the resource explains the principle that mass is neither created nor destroyed in chemical reactions, using both theoretical concepts and practical activities to engage students.
Key learning objectives include:
Defining the conservation of mass.
Observing changes in mass during chemical reactions.
Explaining changes in mass in non-enclosed systems using the particle model.
The lesson begins with an engaging starter activity involving counting atoms in a reaction to emphasize the rearrangement of atoms during chemical processes. The resource incorporates clear explanations, worked examples, and real-life scenarios, such as burning carbon or reacting calcium carbonate with hydrochloric acid, to illustrate the concept.
A hands-on experiment is included, allowing students to measure and analyze changes in mass when calcium carbonate reacts with hydrochloric acid. Detailed safety instructions, method steps, and example data are provided to ensure a safe and effective lab experience. The resource concludes with a range of practice questions, including calculations and conceptual problems, with answers for self-assessment.
This resource features enhanced explanations, updated examples, and clear instructions to improve learning outcomes. It is provided in a PowerPoint (.pptx) format, ensuring compatibility with most educational devices and software. Perfect for teachers seeking a comprehensive and interactive way to teach conservation of mass and for students aiming to solidify their understanding of fundamental chemistry concepts.
This detailed PowerPoint presentation, is an essential resource for chemistry students to master core concepts. The lesson is structured to help learners define and apply relative atomic mass (Ar) and relative formula mass (Mr), utilizing the periodic table effectively. Students will also learn to calculate the percentage mass of elements within compounds, making it a versatile tool for foundational chemistry education.
Key learning objectives include:
Defining Ar and Mr.
Identifying atomic and mass numbers using the periodic table.
Calculating relative formula masses of compounds, even those with brackets.
Determining the percentage mass of elements in chemical compounds.
The presentation includes engaging starter activities, such as balancing equations and calculating subatomic particles for elements, followed by detailed explanations and worked examples. For instance, students will calculate the percentage mass of hydrogen in water (H₂O) and oxygen in glucose (C₆H₁₂O₆), reinforcing real-world applications.
Designed for GCSE-level chemistry or equivalent, this resource provides practice questions with answers, ranging from simple calculations to more complex problems involving multiple atoms. It ensures a step-by-step understanding of concepts and offers a robust platform for both classroom instruction and independent study.
The file format is PowerPoint (.pptx), compatible with most educational devices. This update includes enhanced examples and refined content for greater clarity and engagement. Perfect for educators aiming to deliver dynamic lessons and for students striving to excel in chemistry.
PowerPoint that covers the following learning objectives:
Define the mass of an object.
Measure mass of an object using a mass balance.
Includes questions, pictures, instructions and a practical in which the students have to use mass balances to measure the mass of up to 20 objects.
There are questions that ask students to add masses of objects together, substract masses and work out the difference.
The results table, questions and space for answers are on the worksheet.
This is for a primary/early secondary class.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
PowerPoint that covers the following learning objectives:
Measure the temperature of a substance.
Plot a graph of temperature vs. time.
In this investigation, students will compare how a large beaker of hot water and a small beaker of hot water cool down differently. They will form a research question, hypothesis, fill in table of results, plot line graphs and form a conclusion.
PowerPoint includes research question, hypothesis, method, graphs and conclusion.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
Practice calculating atom economy with these tiered questions. Answers included.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
Quiz includes:
Reactivity series
Extracting metals
Displacement Reactions
Quiz is out of 28 marks, so half the lesson to do the quiz and the other half to go over answers.
Mark scheme is included.
24 mark quiz on the following topics:
Writing chemical formula for ionic compounds.
Properties and structure of ionic compounds.
Drawing ions and ionic bonding.
Describing how ionic bonds form.
Mark scheme included.
Unlock the fundamentals of ionic compounds with this comprehensive teaching resource! This PowerPoint presentation is ideal for educators aiming to deliver engaging, hands-on lessons in chemistry.
Key Features:
Clear Learning Objectives - Students will explore:
The electrical conductivity of ionic compounds in different states.
The reasons behind high melting and boiling points.
Practical demonstrations to test conductivity in solid, aqueous, and molten states.
Interactive Starter Activities - Includes tasks like diagramming ionic bonding, writing equations, and identifying ionic compound properties, promoting critical thinking and problem-solving.
Experimental Focus - Step-by-step instructions for conducting safe, hands-on experiments using basic lab equipment to test conductivity and understand ionic behavior.
Detailed Explanations - Breakdowns of how ionic structures influence properties, with visual aids like animations and examples for easy comprehension.
Built-in Assessments - Thought-provoking questions challenge students to apply their knowledge and reinforce learning.
Perfect for middle and high school chemistry classes, this ready-to-use resource ensures an engaging and educational experience. Equip your students to master the properties of ionic compounds with confidence!
This PowerPoint resource guides students through the investigation of the specific heat capacity of an object, focusing on key scientific methods and calculations. Designed to meet curriculum requirements, it includes:
Starter Activity: Questions to review the definition and formulae for specific heat capacity, as well as real-life applications (e.g., why a full kettle takes longer to boil).
Step-by-Step Practical Instructions: Setting up equipment, including a mass balance, immersion heater, thermometer, and electrical circuit. Recording data such as voltage, current, and temperature changes over time. Performing the experiment with and without insulation to explore energy loss.
Key Equations: Includes Q=mcΔT and E=IVt for calculating energy transfer and specific heat capacity.
Analysis and Interpretation: Discussion on the effect of insulation on reducing energy loss. Exploring the precision and repeatability of results. Extension ideas, such as testing different materials or types of insulation.
Graphical Representation: Opportunities to plot temperature vs. time and analyze trends.
Reflection and Method Writing: Students are encouraged to write a clear, repeatable method and reflect on the reliability of their results.
This resource is perfect for supporting students in mastering practical skills, data analysis, and understanding energy transfer concepts in a controlled, engaging environment.
This PowerPoint presentation provides a comprehensive lesson on internal energy for science students. It begins with an engaging starter activity to review foundational concepts such as specific heat capacity, energy transfer mechanisms, and kinetic energy stores. Key learning objectives include:
Defining internal energy as the sum of kinetic and potential energy of particles in a substance.
Exploring how heating affects a substance’s internal energy, temperature, and state of matter.
Differentiating between changes in kinetic energy and potential energy during state changes like melting, boiling, and freezing.
Understanding particle arrangements and movements in solids, liquids, and gases.
The presentation also includes interactive tasks like gap-fill exercises, diagrams, and detailed explanations of heating curves. Practice questions reinforce understanding and encourage critical thinking about energy transfer and particle behavior during heating and phase transitions.
Learning Objectives:
State how energy and temperature are measured.
Describe the difference between heat and temperature.
Describe how energy is transferred from one object to another.
Explain what is meant by thermal equilibrium.