Hero image

GJHeducation's Shop

Average Rating4.51
(based on 918 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1210k+Views

2017k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
DNA replication (Edexcel A-level Biology A)
GJHeducationGJHeducation

DNA replication (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the key steps in the process of DNA replication, including the role of DNA polymerase. Both the detailed PowerPoint and accompanying resources have been designed to cover point 2.11 (i) of the Pearson Edexcel A-level Biology A specification and this lesson also explains why this replication is known as semi-conservative in order to prepare the students for the following lesson on Meselson and Stahl’s experiment. The main focus of this lesson is the role of DNA polymerase in the formation of the growing nucleotide strands but the students will also learn that the hydrogen bonds between nucleotide bases are broken by DNA helicase and that DNA ligase joins the nucleic acid fragments. Time is taken to explain key details, such as the assembly of strands in the 5’-to-3’ direction, so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure and hydrolysis reactions through a range of exam questions and answers are displayed so that any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
Communicable diseases REVISION (AQA Combined)
GJHeducationGJHeducation

Communicable diseases REVISION (AQA Combined)

(0)
This engaging revision lesson challenges the students on their knowledge of the communicable diseases topic as detailed in the AQA GCSE combined science specification. The PowerPoint and accompanying resources include a range of tasks that enable the students to assess their knowledge of the 7 viral, bacterial, fungal and protist infections that are listed in topic B3.1. This lesson has been designed to be used as a final revision resource as the GCSE exams approach, or as part of revision for an end of topic test.
Topic 1: Biological molecules (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 1: Biological molecules (Edexcel A-level Biology B)

19 Resources
The biological molecules topic is incredibly important, not just because it is found at the start of the course, but also because of its detailed content which must be well understood to promote success with the other 9 Edexcel A-level Biology B topics. Many hours of intricate planning has gone into the design of all of the 19 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked and misconceptions addressed and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions. The following specification points are covered by the lessons within this bundle: The differences between monosaccharides, disaccharides and polysaccharides The structure of glucose and ribose The formation of disaccharides and polysaccharides from monosaccharides The structure of starch, glycogen and cellulose The synthesis of a triglyceride The differences between saturated and unsaturated lipids The relationship between the structure of lipids and their roles The structure and properties of phospholipids The structure of an amino acid The formation of polypeptides and proteins The role of ionic, hydrogen and disulphide bonding in proteins The levels of protein structure The structure of collagen and haemoglobin The structure of DNA The semi-conservative replication of DNA A gene is a sequence of bases on DNA that codes for an amino acid sequence The structure of mRNA The structure of tRNA The process of transcription The process of translation Base deletions, insertions and substitutions as gene mutations The effect of point mutations on amino acid sequences The structure of enzymes as globular proteins The concept of specificity and the induced-fit hypothesis Enzymes are catalysts that reduce activation energy Understand how temperature affects enzyme activity Enzymes catalyse a wide range of intracellular reactions as well as extracellular ones The role of inorganic ions in plants The importance of water for living organisms Due to the detail included in these lessons, it is estimated that it will take in excess of 2 months of allocated A-level teaching time to complete. If you would like to see the quality of the lessons then download the monosaccharides, disaccharides and polysaccharides, glucose and ribose, triglycerides, structure of DNA and transcription lessons as these have been uploaded for free.
Types of selection (AQA A-level Biology)
GJHeducationGJHeducation

Types of selection (AQA A-level Biology)

(1)
This engaging and fully-resourced lesson looks at the effects of stabilising, directional and disruptive selection as the three main types of selection. The PowerPoint and accompanying resources have been designed to cover the 3rd part of point 7.3 of the AQA A-level Biology specification which states that students should be able to identify each type of selection by its effect on different phenotypes. The lesson begins with an introduction to the mark, release, recapture method to calculate numbers of rabbits with different coloured fur in a particular habitat. This method is covered later in topic 7 so this section of the lesson is designed purely to generate changes in numbers of the organisms. Sketch graphs are then constructed to show the changes in the population size in this example. A quick quiz competition is used to engage the students whilst introducing the names of the three main types of selection before a class discussion point encourages the students to recognise which specific type of selection is represented by the rabbits. Key terminology including intermediate and extreme phenotypes and selection pressure are used to emphasise their importance during explanations. A change in the environment of the habitat and a change in the numbers of the rabbits introduces directional selection before students will be given time to discuss and to predict the shape of the sketch graph for disruptive selection. Students are challenged to apply their knowledge in the final task of the lesson by choosing the correct type of selection when presented with details of a population and answer related questions.
Meiosis (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Meiosis (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson focuses on the role of meiosis in ensuring genetic variation through the production of non-identical gametes. The detailed PowerPoint and accompanying resource have been designed to cover point 3.9 of the Pearson Edexcel A-level Biology (Salters Nuffield) specification which states that students should be able to describe how crossing over and independent assortment result in genetically unidentical daughter cells. In order to understand how the events of meiosis like crossing over and random assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent segregation of chromosomes and chromatids during anaphase I and II results in genetically different gametes. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam questions which challenge the students to apply their knowledge to potentially unfamiliar situations.
Classification REVISION (AQA GCSE)
GJHeducationGJHeducation

Classification REVISION (AQA GCSE)

(0)
This fully-resourced revision lesson allows students to check on their understanding of Linnaeus’s and Woese’s classification systems. The engaging PowerPoint and accompanying resources have been designed to challenge the details of point B6.4 of the AQA GCSE biology and combined science specifications. The lesson contains a range of tasks including exam-questions and quizzes which provide opportunities for the students to assess their knowledge of kingdom, phylum, class, order, family, genus and species as the classification taxa and to recognise the binomial naming system. The lesson also reminds students that the three domain-system divides the Prokaryote kingdom into Archaea and Bacteria and describes how this system was developed once new evidence was discovered. As well as testing the content of B6.4, this lesson uses a series of questions to challenge understanding of linked topics which include eukaryotic and prokaryotic cell structures, microscopes, communicable diseases and ecological terms. This lesson has been planned for revision purposes in the lead up to the GCSE exams or before end of topic tests or mocks.
Osmosis and cells (OCR A-level Biology)
GJHeducationGJHeducation

Osmosis and cells (OCR A-level Biology)

(0)
This detailed lesson describes how the movement of water molecules by osmosis can affect both plant and animal cells. Both the PowerPoint and accompanying resources have been designed to cover specification point 2.1.5 (e) [i] as detailed in the OCR A-level Biology A specification and there is a particular focus on solutions of different water potentials. It’s likely that students will have used the term concentration in their osmosis definitions at GCSE, so the aim of the starter task is to introduce water potential to allow students to begin to recognise osmosis as the movement of water molecules from a high water potential to a lower potential, with the water potential gradient. Time is taken to describe the finer details of water potential to enable students to understand that 0 is the highest value (pure water) and that this becomes negative once solutes are dissolved. Exam-style questions are used throughout the lesson to check on current understanding as well as prior knowledge checks which make links to previously covered topics such as the lipid bilayer of the cell membrane. The remainder of the lesson focuses on the movement of water when animal and plant cells are suspended in hypotonic, hypertonic or isotonic solutions and the final appearance of these cells is described, including any issues this may cause. This lesson has been specifically written to tie in with the previous two lessons covering 2.1.5 (b) & (d) where the cell membrane, diffusion and active transport were described.
Species and taxonomy (AQA A-level Biology)
GJHeducationGJHeducation

Species and taxonomy (AQA A-level Biology)

(1)
This engaging lesson covers the biological classification of a species, phylogenetic classification and the use of the binomial naming system. The PowerPoint and accompanying resources have been designed to cover point 4.5 of the AQA A-level Biology specification which is titled species and taxonomy. The lesson begins by looking at the meaning of a population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a horse and a donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Although the art of courting might be lost on humans in the modern world, the marabou stork is used as an example to show how courtship behaviour is an essential precursor to successful mating in most organisms. Students are encouraged to discuss other examples of courtship behaviour, such as the release of pheromones and birdsong, so that their knowledge and understanding is broad. Moving forwards, students will learn that species is the lowest taxon in the modern-day classification hierarchy. A quiz runs throughout the lesson and this particular round will engage the students whilst they learn the names of the other 7 taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system. The final part of the lesson briefly looks at how advances in genome sequencing and the comparison of common biological molecules has allowed the relationships between organisms to be clarified. This is a detailed lesson and it is estimated that it will take around 2 hours of A-level teaching time to cover the content and therefore this specification point.
Gel electrophoresis (CIE International A-level Biology)
GJHeducationGJHeducation

Gel electrophoresis (CIE International A-level Biology)

(0)
This fully-resourced lesson explains how gel electrophoresis is used to analyse nucleic acids and proteins and explores its applications in forensic science and medical diagnosis. The engaging and detailed PowerPoint and accompanying resource have been written to cover point 19.1 (d) of the CIE International A-level Biology specification As a whole lesson, each step of the genetic fingerprinting process is covered but with the main focus on gel electrophoresis within this process. Students will be introduced to STRs and will come to recognise their usefulness in human identification as a result of the variability between individuals. Moving forwards, the involvement of the PCR and restriction enzymes are discussed and students are challenged on their knowledge of this process and these substances as they were encountered in a previous lesson. The main section of the lesson focuses on the use of gel electrophoresis to separate DNA fragments (as well as proteins) and the key ideas of separation due to differences in base pair length or molecular mass are discussed and explained. As well as current understanding checks, an application question involving Huntington’s disease is used to challenge their ability to apply their knowledge of the process to an unfamiliar situation. The remainder of the lesson describes how the DNA is transferred to a membrane and hybridisation probes are used to create a pattern on the X-ray film. Time has been taken to make continuous links to the previous lessons in topic 19.1 as well as those from topic 6 where DNA, RNA and protein synthesis were introduced.
Cardiac cycle (OCR A-level PE)
GJHeducationGJHeducation

Cardiac cycle (OCR A-level PE)

(0)
This lesson describes and explains how the contraction of the heart chambers during atrial and ventricular systole and the relaxation during diastole causes blood to flow through the heart. The engaging PowerPoint and accompanying resource have been designed to cover the 2nd point of the “Cardiovascular system at rest” topic in 1.1.b of the OCR A-level PE specification The students will have already encountered aspects of the cardiovascular system earlier in this section and this lesson aims to build on that knowledge. Students will be introduced to the sequence of events known as the cardiac cycle and will learn that the cycle can be split into three parts, which are atrial systole, ventricular systole and diastole. There is a particular focus on the role of the AV and semi-lunar valves in the control of blood flow and students are challenged to explain how pressure changes cause these valves to open or close. The final task of the lesson involves a quiz round called “RECYCLE THIS?” where the teams have to use their knowledge of the cardiac cycle and the structures of the heart and blood vessels to spot any errors in the description of blood flow through the heart
Autonomic control of heart rate (Edexcel A-level Biology B)
GJHeducationGJHeducation

Autonomic control of heart rate (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how the autonomic nervous system controls the heart rate. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 9.8 (i) of the Edexcel A-level Biology B specification which states that students should understand the roles of baroreceptors, chemoreceptors, the cardiac centre in the medulla oblongata and the sympathetic and parsympathetic nerves in the control. This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work
Module 5.1.4: Hormonal communication (OCR A-level Biology)
GJHeducationGJHeducation

Module 5.1.4: Hormonal communication (OCR A-level Biology)

5 Resources
This lesson bundle contains 5 detailed lesson PowerPoints and their accompanying resources which have been designed to cover the content of module 5.1.4 (Hormonal communication) of the OCR A-level Biology A specification. They contain a wide variety of tasks which include exam-style questions with displayed mark schemes that challenge the students on their current understanding as well as their ability to make links to previously covered topics. The following specification points are covered in this bundle: Endocrine communication by hormones The structure and functions of the adrenal glands The histology of the pancreas The regulation of blood glucose concentration by the release of insulin and glucagon The control of insulin secretion The difference between type I and II diabetes mellitus The potential treatments for diabetes mellitus If you would like to sample the quality of the lessons in this bundle, then download the endocrine communication lesson as this has been uploaded for free
Maths in A-level Biology (OCR A-level Biology)
GJHeducationGJHeducation

Maths in A-level Biology (OCR A-level Biology)

8 Resources
The mathematical element of the OCR A-level Biology A specification is substantial and every year, there are a large number of exam questions that require the application of a range of mathematical skills. Therefore, a clear understanding of how and when to apply these skills is closely related to success on this course and the following calculations are covered by the 9 lessons that are included in this bundle: Using the chi-squared test to determine significance between the observed and expected results of a genetic cross Using the Hardy Weinberg principle to calculate the frequency of an allele or a genotype in a population Calculating the standard deviation to measure the spread of data Using the Student’s t-test to compare the means of two sets of data Calculating the temperature coefficient Calculating the proportion of polymorphic gene loci Using and interpreting Simpson’s index of diversity to calculate the biodiversity of a habitat Using the Spearman’s rank correlation coefficient to consider the relationship of the data The use and manipulation of the magnification formula A revision lesson is also included in this bundle which acts as a fun and engaging revision of the range of calculations
t-test (CIE A-level Biology)
GJHeducationGJHeducation

t-test (CIE A-level Biology)

(0)
This lesson describes the t-test can be used to compare the variation of two different populations. The detailed PowerPoint and accompanying resources have been designed to cover point 17.1 [c] of the CIE A-level Biology specification and also explains how to calculate the standard deviation to measure the spread of a set of data as this value is needed in the t-test formula A step by step guide walks the students through each stage of the calculation of the standard deviation and gets them to complete a worked example with the class before applying their knowledge to another set of data in an exam-style question. This data looks at the birth weights of humans on one day in the UK and this is used again later in the lesson to compare against the birth weights of babies in South Asia when using the t-test. The null hypothesis is introduced and students will learn to accept or reject this based upon a comparison of their value against one taken from the table based on the degrees of freedom.
Converting units (Maths in Science)
GJHeducationGJHeducation

Converting units (Maths in Science)

(0)
A fully resourced lesson which includes an informative lesson presentation (34 slides) and differentiated worksheets that show students how to convert between units so they are confident to carry out these conversions when required in Science questions. The conversions which are regularly seen at GCSE are covered as well as some more obscure ones which students have to be aware of. A number of quiz competitions are used throughout the lesson to maintain motivation and to allow the students to check their progress in an engaging way This lesson has been designed for GCSE students but is suitable for KS3
AQA A-level biology revision
GJHeducationGJHeducation

AQA A-level biology revision

8 Resources
This bundle contains 8 revision lessons which use multiple-choice assessments consisting of 20 questions to challenge the students on their knowledge and understanding of all 8 topics in the AQA A-level biology specification. In addition to the assessments, each lesson includes a PowerPoint which reveals the answers and contains additional questions to check on further knowledge and detail. If you would like to sample the quality of these lessons, then download the topic 1 and 6 revision lessons as these have been uploaded for free.
AQA GCSE Chemistry TOPIC 9 REVISION (Chemistry of the atmosphere)
GJHeducationGJHeducation

AQA GCSE Chemistry TOPIC 9 REVISION (Chemistry of the atmosphere)

(0)
A fully resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within TOPIC 9 (Chemistry of the atmosphere) of the AQA GCSE Chemistry specification (specification point C4.9). The topics that are tested within the lesson include: The proportion of different gases in the atmosphere The Earth’s early atmosphere Greenhouse gases Atmospheric pollutants Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require further attention
Particle model of matter REVISION (AQA GCSE Physics Topic 3)
GJHeducationGJHeducation

Particle model of matter REVISION (AQA GCSE Physics Topic 3)

(0)
This fully-resourced revision lesson challenges the students on their knowledge of the content detailed in topic 3 (Particle model of matter) of the AQA GCSE Physics specification. The wide range of activities which include exam questions with clear explanations will allow them to assess their understanding of the content and to recognise those areas which require further attention. The lesson has been designed to cover as much of the topic as possible but the following specification points have been given particular attention: Recall and apply the equation to calculate density Explaining differences in density between states of matter Internal energy and the result of heating the particles in a system Applying the equation to calculate the specific heat capacity Understanding that temperature does not change during changes of state Applying the equation to calculate the specific latent heat Explaining the qualitative relationship between the temperature of a gas and its pressure Applying the equation that links pressure, volume and a constant The engaging PowerPoint guides students on the use of key mathematical skills to aid success with the various calculations
AQA A-level Biology REVISION LESSONS
GJHeducationGJHeducation

AQA A-level Biology REVISION LESSONS

8 Resources
This bundle of 8 revision lessons covers all of the topics on the AQA A-level Biology specification: Topic 1: Biological molecules Topic 2: Cells Topic 3: Organisms exchange substances with their environment Topic 4: Genetic information, variation and relationships between organisms Topic 5: Energy transfers in and between organisms Topic 6: Organisms respond to changes in their internal and external environments Topic 7: Genetics, populations, evolution and ecosystems Topic 8: The control of gene expression These lessons use a range of exam questions, quick tasks and quiz competitions to motivate and engage the students whilst they assess their understanding of the different topics and evaluate which areas of the specification will require their further attention. These lessons can be used for revision at the end of the topic, in the lead up to mocks or in the lead up to the actual exams.
AQA AS Biology REVISION LESSONS
GJHeducationGJHeducation

AQA AS Biology REVISION LESSONS

4 Resources
This bundle of 4 revision lessons covers the content in topics 1 - 4 of the AQA A-level Biology specification that are taught during year 12 (AS) of the two-year course. Each of the lessons has been designed to include a range of exam questions, differentiated tasks and quiz competitions that will motivate the students whilst they evaluate their understanding of the different sub-topics. Helpful hints are given throughout the lesson to aid the students in structuring their answers and the mathematical elements of the course are constantly challenged as well. The 4 topics covered by this bundle are: Topic 1:Biological molecules Topic 2: Cells Topic 3: Organisms exchange substances with their environment Topic 4: Genetic information, variation and relationships between organisms