Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1127k+Views

1931k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Chemical control in mammals (Edexcel A-level Biology B)
GJHeducationGJHeducation

Chemical control in mammals (Edexcel A-level Biology B)

(0)
This lesson describes the principles of hormone production by endocrine glands and the two modes of action on target cells. The detailed PowerPoint and accompanying resources have been primarily designed to cover points 9.2 (i) & (ii) of the Edexcel A-level Biology B specification but can also be used as a revision tool to check on their knowledge of topics like biological molecules and transcription factors Students should have a base knowledge of the endocrine system from GCSE so this lesson has been planned to build on that knowledge and to add the detail needed at this level. The lesson begins by challenging this knowledge to check that they understand that endocrine glands secrete these hormones directly into the blood. Students will learn that most of the secreted hormones are peptide (or protein) hormones and a series of exam-style questions are used to challenge them on their recall of the structure of insulin as well as to apply their knowledge to questions about glucagon. Moving forwards, the students are reminded that hormones have target cells that have specific receptor sites on their membrane. The relationship between a peptide hormone as a first messenger and a second messenger on the inside of the cell is described to allow students to understand how the activation of cyclic AMP triggers a cascade of events on the inside of the cell. The rest of the lesson focuses on steroid hormones and specifically their ability to pass through the membrane of a cell and to bind to transcription factors, as exemplified by oestrogen.
Neuronal & hormonal communication (OCR A-level Biology)
GJHeducationGJHeducation

Neuronal & hormonal communication (OCR A-level Biology)

10 Resources
This lesson bundle contains 10 lesson PowerPoints, which are highly detailed, and along with their accompanying resources have been designed to cover the content of modules 5.1.3 & 5.1.4 of the OCR A-level Biology A specification, titled neuronal communication and hormonal communication. Each lesson contains a wide range of tasks, that include exam-style questions with mark schemes written into the PowerPoint that students can use to assess their understanding of the current topic as well as previously covered topics. There are also differentiated tasks, discussion points and quick quiz competitions to introduce key values and terms in a fun and memorable way. This lesson bundle covers the following specification points in modules 5.1.3 & 5.1.4: The roles of mammalian sensory receptors in converting different types of stimuli into nerve impulses The structure and functions of sensory, motor and relay neurones The generation and transmission of nerve impulses in mammals The structure and roles of synapses in neurotransmission Endocrine communication by hormones The structure and functions of the adrenal glands The histology of the pancreas The regulation of blood glucose concentration The differences between diabetes mellitus type I and II The potential treatments for diabetes mellitus If you would like to sample the quality of the lessons in this bundle, then download the nerve impulse and endocrine communication lessons as these have been uploaded for free.
Topic 5: Homeostasis and response (AQA GCSE Biology)
GJHeducationGJHeducation

Topic 5: Homeostasis and response (AQA GCSE Biology)

12 Resources
This bundle contains 12 lesson PowerPoints and their accompanying resources, and all of them have been planned at length to cover the GCSE content of topic 5 of the AQA GCSE Biology specification, whilst engaging and motivating the students with a wide range of tasks. These tasks include exam-style questions with answers included in the PowerPoint, guided discussion points and quick quiz rounds which are used to introduce key terms and values in a fun and memorable way whilst instilling some competition The following Homeostasis and response specification points are covered by the lessons in this bundle: Homeostasis* Structure and function of the human nervous system The brain The eye Control of body temperature Human endocrine system Control of blood glucose concentration Maintaining water and nitrogen balance in the body* Hormones in human reproduction Contraception* The use of hormones to treat infertility Negative feedback If you would like to sample the quality of lessons in this bundle, then download the lessons indicated with an asterisk as they have been uploaded for free
Module 4.2.2: Classification and evolution (OCR A-level Biology A)
GJHeducationGJHeducation

Module 4.2.2: Classification and evolution (OCR A-level Biology A)

7 Resources
Classification and evolution is a topic that students can find difficult, which may be for a number of reasons that include a lack of engagement during lessons or because these topics are taught quickly as exams approach at the end of year 12. However, a clear understanding is critical, as assessment questions on the content of this module are common and are often worth a significant number of marks. In line with this, the planning of each of the 7 lessons in this bundle has focused on the inclusion of a wide range of tasks that will engage and motivate the students whilst covering the following points as detailed in module 4.2.2 of the OCR A-level Biology A specification: The biological classification of species The taxonomic hierarchy The binomial system of naming species and the advantages of such a system The features used to classify organisms into the five kingdoms The evidence that has led to new classification systems, such as the three domains of life The different types of variation Using standard deviation to measure the spread of a set of data Using the Student’s t-test to compare means of data values of two populations Using the Spearman’s rank correlation coefficient to consider the relationship of the data The different types of adaptations of organisms to their environment The mechanism by which natural selection can affect the characteristics of a population over time How evolution in some species has implications for human populations If you would like to sample the quality of the lessons included in this bundle, then download the following lessons as these have been uploaded for free: Taxonomic hierarchy and the binomial naming system Adaptations & natural selection
Module 4: Biodiversity, evolution and disease (OCR A-level Biology A)
GJHeducationGJHeducation

Module 4: Biodiversity, evolution and disease (OCR A-level Biology A)

16 Resources
The detailed content, exam-style questions, guided discussion points and quiz competitions that are found in each of the 16 paid lessons that are included in this bundle (as well as the 5 free lessons which are named at the bottom) cover the following specification points in module 4 of the OCR A-level Biology A specification: Module 4.1.1 The different types of pathogen that can cause communicable diseases in plants and animals The means of transmission of animal and plant communicable pathogens The primary non-specific defences against pathogens in animals The structure and mode of action of phagocytes The structure, different roles and modes of action of B and T lymphocytes in the specific immune response The primary and secondary immune responses The structure and general functions of antibodies An outline of the action of opsonins, agglutinins and anti-toxins The differences between active and passive immunity, and between natural and artificial immunity Autoimmune diseases The principles of vaccination Module 4.2.1 How biodiversity can be considered at different levels The random and non-random sampling strategies that are carried out to measure the biodiversity of a habitat How to measure species richness and species evenness The use and interpretation of Simpson’s Index of Diversity How genetic biodiversity may be assessed The ecological, economic and aesthetic reasons for maintaining biodiversity In situ and ex situ methods of maintaining biodiversity International and local conservation agreements made to protect species and habitats 4.2.2 The biological classification of species The binomial system of naming species and the advantage of such a system The features used to classify organisms into the five kingdoms The evidence that has led to new classification systems The different types of variation Using the standard deviation to measure the spread of a set of data Using the Student’s t-test to compare means of data values of two populations Using the Spearman’s rank correlation coefficient to consider the relationship of the data The different types of adaptations to their environment The mechanism by which natural selection can affect the characteristics of a population over time How evolution in some species has an impact on human populations If you would like to get an idea of the quality of the lessons that are included in this bundle, then download the following five OCR A lessons which have been uploaded for free: Immunity & vaccinations Reasons for maintaining biodiversity Taxonomic hierarchy and the binomial naming system Adaptations and natural selection Transmission of animal and plant pathogens
Topic 17: Selection and evolution (CIE A-level Biology)
GJHeducationGJHeducation

Topic 17: Selection and evolution (CIE A-level Biology)

8 Resources
This bundle contains 8 detailed and engaging lessons, and together they cover a lot of the key content of topic 17 in the CIE A-level Biology specification. Selection and evolution are key processes in Biology but are not always well understood or well explained by students. With this in mind, these lessons have been designed to support students in making links between the different concepts. The following specification points are covered by these lessons: The differences between continuous and discontinuous variation Using the t-test to compare the variation of two different populations The importance of genetic variation in selection Natural selection Environmental factors can act as stabilising, disruptive and directional forces in natural selection Selection, the founder effect and genetic drift affect allele frequencies in populations Using the Hardy-Weinberg principle The molecular evidence that reveals similarities between closely related organisms Allopatric and sympatric speciation If you would like to sample the quality of lessons in this bundle then download the following lessons as these have been shared for free continuous and discontinuous variation molecule evidence and evolution
Module 3.1.1: Exchange surfaces (OCR A-level Biology A)
GJHeducationGJHeducation

Module 3.1.1: Exchange surfaces (OCR A-level Biology A)

5 Resources
This lesson bundle contains 5 lesson PowerPoints and together with their accompanying worksheets, they will engage and motivate the students whilst covering the following specification points in module 3.1.1 (Exchange surfaces) of the OCR A-level Biology A specification: The need for specialised exchange surfaces The features of an efficient exchange surface The structures and functions of the components of the mammalian gaseous exchange system The mechanism of ventilation in mammals The mechanisms of ventilation and gas exchange in bony fish and insects Found interspersed within the detailed A-level Biology content in the slides are current understanding and prior knowledge checks and these are followed by displayed mark schemes to allow students to assess their progress. There are also differentiated tasks, guided discussion periods and quiz competitions that introduce key values and terms in a fun and memorable way If you would like to see the quality of lessons included in this bundle, then download the mammalian gaseous exchange system and ventilation and gas exchange in insects lessons as these have been uploaded for free
Stem cells and cell potency (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Stem cells and cell potency (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the meaning of the terms stem cell, pluripotency, totipotency, morula and blastocyst. The PowerPoint and accompanying worksheets have been designed to cover points 3.17 (i) and (ii) of the Edexcel International A-level Biology specification and contains discussions about the decisions that the scientific community have to make about the use of stem cells in medical therapies. The lesson begins with a knowledge recall of the structure of eukaryotic cells and the students have to use the first letters of each of the four answers to reveal the key term, stem cell. Time is then taken to consider the meaning of cellular differentiation, and this leads into the key idea that not all stem cells are equal when it comes to the number of cell types that they have the potential to differentiate into. A quick quiz round introduces the five degrees of potency, and then the students are challenged to use their understanding of terminology to place totipotency, pluripotency, multipotency, oligopotency and unipotency in the correct places on the potency continuum. Although the latter three do not have to be specifically known based on the content of specification point 3.17 (i), an understanding of their meaning was deemed helpful when planning the lesson as it should assist with the retention of knowledge about totipotency and pluripotency. These two highest degrees of potency are the main focus of the lesson, and key details are emphasised such as the ability of totipotent cells to differentiate into any extra-embroyonic cell, which the pluripotent cells are unable to do. The morula, and inner cell mass and trophoblast of the blastocyst are then introduced and used to demonstrate these differences in potency. The final part of the lesson discusses the decisions that the scientific community have to make about the use of embryonic stem cells, adult stem cells and also foetal stem cells which allows for a link to chorionic villus sampling from topic 2. There is also a Maths in a Biology context question included in the lesson (when introducing the morula) to ensure that students continue to be prepared for the numerous calculations that they will have to tackle in the terminal exams. This resource has been differentiated two ways to allow students of differing abilities to access the work
Using the t-test to analyse data (Edexcel A-level Biology B)
GJHeducationGJHeducation

Using the t-test to analyse data (Edexcel A-level Biology B)

(0)
This lesson describes how the standard deviation and the t-test are used to analyse data. The detailed PowerPoint and accompanying resources are part of the first lesson in a series of 2 lessons that have been designed to cover point 10.1 (vi) of the Edexcel A-level Biology B specification. The next lesson, which uses skills covered in this lesson and has also been uploaded, describes how to analyse data using the Spearman rank correlation coefficient A step by step guide walks the students through each stage of the calculation of the standard deviation and gets them to complete a worked example with the class before applying their knowledge to another set of data. This data looks at the birth weights of humans on one day in the UK and this is used again later in the lesson to compare against the birth weights of babies in South Asia when using the student’s t-test. The null hypothesis is re-introduced, as it will encountered when considering the chi squared test in topic 8, and students will learn to accept or reject this based upon a comparison of their value against one taken from the table based on the degrees of freedom.
Structure of DNA (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Structure of DNA (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes the structure of DNA as a double-stranded polymer coiled into a double helix and focuses on nucleotides as the monomers. The PowerPoint and accompanying resources have been designed to cover the detail of point 3.4 of the Edexcel GCSE Biology & Combined Science specifications. The lesson begins with a reveal of the acronym DNA and students will learn that this stands for deoxyribonucleic acid. There is a focus on the use and understanding of key terminology throughout the lesson so time is taken to look at the meanings of the prefixes poly and mono as well as the suffix -mer. This leads into the description of DNA as a polymer which is made up of many monomers known as nucleotides. Students will be introduced to the three components of a DNA nucleotide and will learn that four different bases can be attached to the sugar. An observational task is used to get them to recognise that DNA consists of two strands and that complementary bases are joined by hydrogen bonds. Understanding checks are interspersed throughout the lesson along with mark schemes so that students can assess their progress
Control of blood glucose concentration HT (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

Control of blood glucose concentration HT (AQA GCSE Biology & Combined Science)

(0)
This fully-resourced lesson has been designed to cover both the foundation and higher tier content of specification point 5.3.2 (Control of blood glucose concentration) as found in topic 5 of the AQA GCSE Biology & Combined Science specifications. This resource contains an engaging PowerPoint (37 slides) and accompanying worksheets, some of which have been differentiated so that students of different abilities can access the work. The resource is filled with a wide range of activities, each of which has been designed to engage and motivate the students whilst ensuring that the key Biological content is covered in detail. Understanding checks are included throughout so that the students can assess their grasp of the content. In addition, previous knowledge checks make links to content from earlier topics such as the endocrine system and literacy checks ensure that the students can spell and recognise the key words, which is extremely important considering how many terms begin with the letter g in this homeostatic control system. The following content is covered in this lesson: The receptors, coordination centre and effectors in the control of blood glucose concentration The release of insulin when high blood glucose levels are detected The conversion of glucose to glycogen for storage in liver and muscle cells The causes and treatments of diabetes type I and II The release of glucagon when low blood glucose levels are detected The interaction of insulin and glucagon in a negative feedback cycle As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology or Combined Science courses, but it can be used with A-level students who need to go back over the key points before looking at the homeostatic control in more detail
Regulation of BLOOD GLUCOSE CONCENTRATION (OCR A-level Biology A)
GJHeducationGJHeducation

Regulation of BLOOD GLUCOSE CONCENTRATION (OCR A-level Biology A)

(1)
This highly detailed, fully-resourced lesson has been designed to cover the content of specification point 5.1.4 (d) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the regulation of blood glucose concentration. There is focus on the negative feedback mechanisms that release insulin or glucagon and the role of the liver. It challenges the students recall of the control of insulin release from the beta cells which was taught in an earlier lesson. A wide range of activities will maintain motivation and engagement whilst the content is covered in detail to enable the students to explain how the receptors in the pancreas detect the concentration change and how the hormones attaching to receptor sites on the liver triggers a series of events in this effector organ. This is a topic which has a huge amount of difficult terminology so time is taken to look at all of the key words, especially those which begin with the letter G so students are able to use them accurately in the correct context. The action of adrenaline is also considered and linked to the breakdown of glycogen to glucose during glycogenolysis. This lesson has been written for students studying on the OCR A-level Biology A course and ties in with the lesson on the differences between type I and II diabetes mellitus as well as the human endocrine system
The structure of the nephron (AQA A-level Biology)
GJHeducationGJHeducation

The structure of the nephron (AQA A-level Biology)

(0)
This detailed lesson has been planned to cover the 1st part of specification point 6.4.3 of the AQA A-level Biology specification which states that students should be able to describe the detailed structure of the nephron and understand its role in ultrafiltration, selective reabsorption and osmoregulation. The lesson was designed at the same time as the other lessons in this topic on ultrafiltration, selective reabsorption and osmoregulation so that a common theme runs throughout and students can build up their knowledge gradually in order to develop a deep understanding of this organ. Students will come to recognise the renal cortex and renal medulla as the two regions of the kidney and learn the parts of the nephron which are found in each of these regions. Time is taken to look at the vascular supply of this organ and specifically to explain how the renal artery divides into the afferent arterioles which carry blood towards the glomerulus and the efferent arterioles which carry the blood away. The main task of the lesson challenges the students to relate structure to function. Having been introduced to the names of each of the parts of the nephron, they have to use the details of the structures found at these parts to match the function. For example, they have to make the connection between the microvilli in the PCT as a sign that this part is involved in selective reabsorption. This lesson has been designed for students studying on the AQA A-level Biology course
Autosomal linkage (AQA A-level Biology)
GJHeducationGJHeducation

Autosomal linkage (AQA A-level Biology)

(1)
This clear and concise lesson explains how the inheritance of two or more genes that have loci on the same autosome demonstrates autosomal linkage. The engaging PowerPoint and associated resource have been designed to cover the part of point 7.1 of the AQA A-level Biology specification which states that students should be able to use fully-labelled genetic diagrams to interpret the results of crosses involving autosomal linkage. This is a topic which can cause confusion for students so time was taken in the design to split the concept into small chunks. There is a clear focus on how the number of original phenotypes and recombinants can be used to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the chiasma determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions. The main task of the lesson acts as an understanding check where students are challenged to analyse a set of results involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene to determine whether they have loci on the same chromosome and if so, how close their loci would appear to be. This lesson has been written to tie in with the other 6 lessons from topic 7.1 (Inheritance) and these have also been uploaded
Limiting factors of photosynthesis (AQA A-level Biology)
GJHeducationGJHeducation

Limiting factors of photosynthesis (AQA A-level Biology)

(0)
This fully-resourced lesson challenges students to identify environmental factors that limit the rate of photosynthesis. The PowerPoint and accompanying resources have been designed to cover the fourth part of point 5.1 of the AQA A-level Biology specification and focuses on light intensity, carbon dioxide concentration and temperature. The lesson has been specifically written to tie in with the three previous lessons in this topic which covered the structure of the chloroplast, the light-dependent reactions and the light-independent reactions. Exam-style questions are included throughout the lesson and these require the students to explain why light intensity is important for both reactions as well as challenging them on their ability to describe how the relative concentrations of GP, TP and RuBP would change as carbon dioxide concentration decreases. There are also links to previous topics such as enzymes when they are asked to explain why an increase in temperature above the optimum will limit the rate of photosynthesis. Step by step guides are included to support them to form some of the answers and mark schemes are always displayed so that they can quickly assess their understanding and address any misconceptions.
Ultrastructure of prokaryotic cells (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Ultrastructure of prokaryotic cells (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the ultrastructure of a prokaryotic cell and the function of the structures found in these cells. The engaging PowerPoint and accompanying resources have been designed to cover specification point 3.5 (i) & (ii) as detailed in the Edexcel International A-level Biology specification and also compares these cells against the eukaryotic cells that were met in the previous lesson. A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to recognise a prefix that they believe translates as before or in front of . This leads into the discovery of the meaning of prokaryote as before nucleus and this acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce
Evolution, natural selection & adaptations (Edexcel A level Biology B)
GJHeducationGJHeducation

Evolution, natural selection & adaptations (Edexcel A level Biology B)

(0)
This fully-resourced lesson describes how evolution can come through natural selection and acts on variation to bring about adaptations. The PowerPoint and accompanying resources have been designed to cover specification points 3.2 (i) & (ii) of the Edexcel A-level Biology B specification and considers a range of different behavioural, anatomical and physiological adaptations. President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin to enable them to see the principles of natural selection. This can then be used when describing how the anatomy of the modern-day giraffe has evolved over time. The concept of convergent evolution is introduced and links are made to the need for modern classification techniques. Moving forwards, students will understand how natural selection leads to adaptations and a quick quiz competition introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. The final part of the lesson focuses on the adaptations of the anteater and links are made to the topic of classification hierarchy which was covered at the start of topic 3… Due to the extensiveness of this lesson and the detail contained within the resources, it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to deliver this lesson.
Substrate & enzyme concentration & enzyme activity (Edexcel A-level Biology B)
GJHeducationGJHeducation

Substrate & enzyme concentration & enzyme activity (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how enzyme and substrate concentration affect the rate of enzyme activity. The PowerPoint and accompanying resources are the last in a series of 3 lessons which cover the detail of point 1.5 (iv) of the Edexcel A-level Biology B specification. The first part of the lesson describes how an increase in substrate concentration will affect the rate of reaction when a fixed concentration of enzyme is used. Time is taken to introduce limiting factors and students will be challenged to identify substrate concentration as the limiting factor before the maximum rate is achieved and then they are given discussion time to identify the possible factors after this point. A series of exam-style questions are used throughout the lesson and the mark schemes are displayed to allow the students to assess their understanding and for any misconceptions to be immediately addressed. Moving forwards, the students have to use their knowledge of substrate concentration to construct a graph to represent the relationship between enzyme concentration and rate of reaction and they have to explain the different sections of the graph and identify the limiting factors. The final section of the lesson describes how the availability of enzymes is controlled in living organisms. Students will come to recognise that this availability is the result of enzyme synthesis and enzyme degradation and their recall of transcription and translation is tested through a SPOT the ERRORs task. Please note that this lesson explains the Biology behind the effect of concentration on enzyme-controlled reactions and not the methodology involved in carrying out such an investigation as this is covered in a core practical lesson.
Macrophages, neutrophils and lymphocytes (Edexcel A-level Biology B)
GJHeducationGJHeducation

Macrophages, neutrophils and lymphocytes (Edexcel A-level Biology B)

(0)
This lesson describes the mode of actions of macrophages, neutrophils and lymphocytes. The engaging PowerPoint and accompanying resource have been primarily designed to cover point 6.7 (i) of the Edexcel A-level Biology B specification but includes an introduction to antigen-presentation so that the students are prepared for upcoming lessons on the cell-mediated and humoral responses. At the start of the lesson, the students are challenged to recall that cytosis is a suffix associated with transport mechanisms and this introduces phagocytosis as a form of endocytosis which takes in pathogens and foreign particles. This emphasis on key terminology runs throughout the course of the lesson and students are encouraged to consider how the start or end of a word can be used to determine meaning. The process of phagocytosis is then split into 5 key steps and time is taken to discuss the role of opsonins as well as the fusion of lysosomes and the release of lysozymes. A series of application questions are used to challenge the students on their ability to make links to related topics including an understanding of how the hydrolysis of the peptidoglycan wall of a bacteria results in lysis. Students will be able to distinguish between neutrophils and monocytes from a diagram and at this point, the role of macrophages and dendritic cells as antigen-presenting cells is described so that it can be used in the next lesson. The lesson concludes with an introduction to lymphocytes so that initial links between phagocytosis and the specific immune responses are made.
Thermoregulation (Edexcel A-level Biology A)
GJHeducationGJHeducation

Thermoregulation (Edexcel A-level Biology A)

(0)
This lesson describes the role of the hypothalamus and the mechanisms of thermoregulation that maintain the body in dynamic equilibrium during exercise. The PowerPoint has been designed to cover point 7.12 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. Students were introduced to homeostasis at GCSE and this lesson has been written to build on that knowledge and to add the key detail needed at this level. Focusing on the three main parts of a homeostatic control system, the students will learn about the role of the internal and peripheral thermoreceptors, the thermoregulatory centre in the hypothalamus and the range of effectors which bring about the responses to restore optimum levels. The following responses are covered in this lesson: Vasodilation Increased sweating Body hairs In each case, time is taken to challenge students on their ability to make links to related topics such as the arterioles involved in the redistribution of blood and the high specific latent heat of vaporisation of water.