Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1127k+Views

1931k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Control of blood water potential (Edexcel A-level Biology B)
GJHeducationGJHeducation

Control of blood water potential (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how the release of ADH from the pituitary gland controls mammalian plasma concentration. The engaging PowerPoint and accompanying resources have been designed to cover the detail included in point 9.9 (iv) of the Edexcel A-level Biology B specification and also includes details of the roles of the osmoreceptors in the hypothalamus. The principles of homeostasis and negative feedback were covered in an earlier lesson in topic 9, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work.
Cell recognition & antigens (AQA A-level Biology)
GJHeducationGJHeducation

Cell recognition & antigens (AQA A-level Biology)

(0)
This lesson describes how the immune system uses molecules on the surface of a cell to identify it, focusing on the identification of pathogens by their antigens. The PowerPoint and accompanying resources which are differentiated are part of the 1st lesson in the series of 7 that cover the content detailed in topic 2.4 of the AQA A-level Biology specification. As this is the first lesson in topic 2.4, it has been specifically planned to introduce a number of key concepts which include phagocytosis, T and B cells, antibodies and memory cells so that students are prepared for upcoming lessons. The lesson begins by challenging the students to use their knowledge of cells to recall the common internal components of a cell before they are informed that all cells also have molecules on their outer membrane. Students will recognise that these molecules are used by the immune system for identification before a quick quiz competition reveals that this allows toxins, abnormal body cells and pathogens to be identified. Moving forwards, the next part of the lesson focuses on the antigens that are found on the outside of a pathogen and links are made to upcoming lesson topics which include: phagocytosis following the identification of a pathogen antigen-presentation by macrophages and dendritic cells production of antibodies which are specific to the antigens the use of antigens in a vaccination program The final task challenges the students to describe and explain how antigen variability will affect disease and disease prevention and this task has been differentiated two ways to allow students of differing abilities to be challenged and supported.
Rods & cone cells (AQA A-level Biology)
GJHeducationGJHeducation

Rods & cone cells (AQA A-level Biology)

(0)
This fully-resourced lesson describes how the functional differences of the retinal rod and cone cells is related to their structures. The detailed PowerPoint and accompanying resources are part of the 2nd in a series of 2 lessons that have been designed to cover the details included in point 6.1.2 of the AQA A-level Biology specification. However, as explained at the start of the lesson, it has been specifically planned to be taught after the lessons in topic 6.3, so that students are aware and understand the meaning of terms such as depolarisation and hyperpolarisation. It is likely that students will be aware that the human retina contains rod and cone cells, so this lesson builds on that knowledge and adds the detail needed at this level. Over the course of the lesson, students will learn that these cells contain different optical pigments and that this feature along with their differing connectivity to the bipolar neurones means that they have different sensitivities to light, colour perception and visual acuity. Exam-style questions are interspersed throughout to check on current understanding and also make links to previously covered topics. For example, students are challenged to recognise a description of the mitochondria so they can discover that this cell structure is found in the inner segment where it is responsible for generating the ATP needed to pump sodium ions out of the cells. As detailed above, this lesson ties in closely with topic 6.3 and students will be expected to make links to synapses and to the changes in membrane potential that occur when sodium ions move in or out of a cell
Topic 5: Energy transfers in and between organisms (AQA A-level Biology)
GJHeducationGJHeducation

Topic 5: Energy transfers in and between organisms (AQA A-level Biology)

14 Resources
Normally the first topic to be taught in the second year of the AQA A-level Biology course, topic 5 contains some very important biological processes which include photosynthesis, respiration and energy transfer between organisms. All of the 13 lessons that are included in this bundle are highly detailed and have been planned at length to ensure that students remain motivated and engaged whilst being constantly challenged on their current understanding. Links to previously-covered topics are also made throughout the lessons. The following specification points are covered in these lessons: TOPIC 5.1 The light-dependent reaction of photosynthesis The use of reduced NADP and ATP from the light-dependent reaction in the light-independent reaction The light-independent reaction of photosynthesis Environmental factors that limit the rate of photosynthesis TOPIC 5.2 Respiration produces ATP Glycolysis as the first stage of aerobic and anaerobic respiration The conversion of pyruvate to lactate or ethanol in the anaerobic pathways The link reaction and the Krebs cycle Synthesis of ATP by oxidative phosphorylation Other respiratory substrates TOPIC 5.3 Gross primary production and net primary production The net production of consumers Farming practices designed to increase the efficiency of energy transfer If you would like to sample the quality of the lessons in this bundle, then download the chloroplast structure, anaerobic respiration, oxidative phosphorylation and GPP lessons as these have been uploaded for free
Efficiency of energy transfer (AQA A-level Biology)
GJHeducationGJHeducation

Efficiency of energy transfer (AQA A-level Biology)

(2)
This lesson describes and explains how production is affected by a range of farming practices designed to increase the efficiency of energy transfer. The PowerPoint and accompanying resources are part of the third lesson in a series of 3 which have been designed to cover the detail included in specification point 5.3 of the AQA A-level Biology specification. Over the course of the lesson, a range of tasks which include exam-style questions with displayed mark schemes, guided discussion periods and quick quiz competitions will introduce and consider the following farming practices: raising herbivores to reduce the number of trophic levels in a food chain intensely rearing animals to reduce respiratory losses in human food chains the use of fungicides, insecticides and herbicides the addition of artificial fertilisers The ethical issues raised by these practices are also considered and alternative methods discussed such as the addition of natural predators and the use of organic fertilisers like manure As this is the last lesson in topic 5.3, it has been specifically planned to challenge the students on their knowledge of the previous two lessons and this includes a series of questions linking farming practice to the formula to calculate net production
Cell structure & biological molecules (OCR A-level Biology A)
GJHeducationGJHeducation

Cell structure & biological molecules (OCR A-level Biology A)

19 Resources
It’s fair to say that cell structure and biological molecules are two of the most important topics in the OCR A-level Biology A course and all 19 lessons that are included in this bundle have been planned at length to cover the module 2.1.1 & 2.1.2 specification points in the detail required at this level. The lesson PowerPoints and their accompanying resources contain a wide range of tasks as well as regular checks to allow students to assess their understanding of the current content as well as prior knowledge checks to emphasise the importance of making links to topics in other modules. The following specification points in modules 2.1.1 (cell structure) and 2.1.2 (biological molecules) are covered by the lessons in this bundle: 2.1.1 The use of microscopy to observe and investigate different types of cell and cell structure in a range of eukaryotic organisms The use of the eyepiece graticule and stage micrometer The use of staining in light microscopy The use and manipulation of the magnification formula The difference between magnification and resolution The ultrastructure of eukaryotic cells and the functions of the different cellular components The interrelationship between the organelles involved in the production and secretion of proteins The importance of the cytoskeleton The similarities and differences between the ultrastructure of prokaryotic and eukaryotic cells 2.1.2 The properties and roles of water in living organisms The concept of monomers and polymers and the importance of condensation and hydrolysis reactions The chemical elements that make up biological molecules The structure and properties of glucose and ribose The synthesis and breakdown of a disaccharide and a polysaccharide by the formation and breakage of glycosidic bonds The structure of starch, glycogen and cellulose molecules The relationship between the structure, function and roles of triglycerides, phospholipids and cholesterol in living organisms The general structure of an amino acid The synthesis and breakdown of dipeptides and polypeptides The levels of protein structure The structure and function of globular proteins The properties and functions of fibrous proteins The key inorganic ions involved in biological processes The chemical tests for proteins, reducing and non-reducing sugars, starch and lipids If you would like to sample the quality of the lessons included in this bundle, then download the following lessons as they have been uploaded for free: The use of microscopy The importance of the cytoskeleton Properties and roles of water Glucose & ribose General structure of an amino acid Dipeptides, polypeptides and protein structure
The cell cycle (OCR A-level Biology A)
GJHeducationGJHeducation

The cell cycle (OCR A-level Biology A)

(0)
This lesson describes the processes that take place during interphase, mitosis and cytokinesis and outlines how checkpoints regulate the cell cycle. The PowerPoint and accompanying resources have been designed to cover points 2.1.6 (a & b) of the OCR A-level Biology specification and prepares the students for the upcoming lessons on the main stages of mitosis and its significance in life cycles The students were introduced to the cell cycle at GCSE so this lesson has been planned to build on that knowledge and to emphasise that the M phase which includes mitosis (nuclear division) only occupies a small part of the cycle. The students will learn that interphase is the main stage and that this is split into three phases, G1, S and G2. A range of tasks which include exam-style questions, guided discussion points and quick quiz competitions are used to introduce key terms and values and to describe the main processes that occur in a very specific order. There is also a focus on the checkpoints, such as the restriction point that occurs before the S phase to ensure that the cell is ready for DNA replication. Extra time is taken to ensure that key terminology is included and understood, such as sister chromatid and centromere, and this focus helps to show how it is possible for genetically identical daughter cells to be formed at the end of the cycle. Important details of mitosis are introduced so students are ready for the next lesson, before the differences in cytokinesis in animal and plant cells are described.
Topic 16: Inherited change (CIE A-level Biology)
GJHeducationGJHeducation

Topic 16: Inherited change (CIE A-level Biology)

10 Resources
Meiosis, genetic inheritance and the control of gene expression are some of the harder topics on this A-level Biology course and all three are covered in topic 16 (Inherited change) of the CIE A-level Biology specification. The 10 lessons included in this bundle have been planned at length and contain a wide range of tasks that cover the detailed content whilst checking on understanding and key terms and values are introduced through engaging quiz competitions. The following topic 16 specification points are covered by these lessons: Topic 16.1 The meaning of a homologous pair of chromosomes The behaviour of chromosomes in animal and plant cells during meiosis Genetic variation is caused by crossing over, random assortment and the random fusion of gametes at fertilisation Topic 16.2 The meaning of key genetic terms Using genetic diagrams to solve problems involving mohohybrid and dihybrid crosses, including those involving autosomal linkage, sex linkage, codominance, multiple alleles and gene interactions Use the chi-squared test to test the significance of differences between observed and expected results Gene mutations occur by substitution, deletion and insertion and may affect the phenotype Topic 16.3 The genetic control of protein production in a prokaryote as shown by the lac operon The function of transcription factors in gene expression in eukaryotes Gibberellins and DELLA protein repressors If you would like to sample the quality of the lessons included in this bundle, then download the autosomal linkage and chi-squared test lessons as these have been uploaded for free
The cell cycle, mitosis and meiosis (CIE A-level Biology)
GJHeducationGJHeducation

The cell cycle, mitosis and meiosis (CIE A-level Biology)

3 Resources
The three lessons included in this bundle describe the key events of the mitotic and meiotic cell cycles and cover the following points as detailed in topics 5 and 16 of the CIE A-level Biology specification: Topic 5: The mitotic cell cycle Explain the importance of mitosis in the production of genetically identical cells, growth, cell replacement, repair of tissues and asexual reproduction Outline the cell cycle, including interphase, mitosis and cytokinesis The behaviour of chromosomes in plant and animal cells during the mitotic cell cycle Topic 16: Inherited change Explain what is meant by a pair of homologous chromosomes The behaviour of chromosomes in plant and animal cells during meiosis Explain how crossing over and random assortment of homologous chromosomes during meiosis and random fusion of gametes at fertilisation lead to genetic variation Each lesson is fully-resourced and the wide range of tasks found in the PowerPoint and the accompanying resources will check on current understanding and prior knowledge and engage the students with guided discussion points and quiz competitions. If you would like to sample the quality of lessons in this bundle, then download the interphase, mitosis and cytokinesis lesson as this has been uploaded for free
Spearman's rank correlation coefficient (OCR A-level Biology)
GJHeducationGJHeducation

Spearman's rank correlation coefficient (OCR A-level Biology)

(0)
This lesson describes how to use the Spearman’s rank correlation coefficient to consider the relationship between two sets of data. The PowerPoint and accompanying exam-style question are part of the final lesson in a series of 3 which have been designed to cover point 4.2.2 (f) of the OCR A-level Biology A specification. The previous two lessons described the different types of variation and explained how to calculate the standard deviation and how to use the Student’s t-test to compare two means. As with the previous lesson, a step by step guide is used to walk the students through the use of the formula to generate the rank coefficient and to determine whether there is a positive correlation, no correlation or a negative correlation. The students are also reminded of the null hypothesis and will be shown how to accept or reject this hypothesis and to determine significance. The students will work through an example with the class and then are given the opportunity to apply their newly-acquired knowledge to an exam-style question. The mark scheme is displayed on the PowerPoint so they can assess their understanding
Specialised and efficient exchange surfaces (OCR A-level Biology)
GJHeducationGJHeducation

Specialised and efficient exchange surfaces (OCR A-level Biology)

(0)
This lesson explains the need for specialised exchange surfaces and uses examples to describe the features of an efficient exchange surface. The PowerPoint and accompanying worksheets have been designed to cover points 3.1.1 (a & b) of the OCR A-level Biology A specification and also have been specifically planned to prepare the students for the upcoming lessons in module 3 on gas exchange and mass transport in animals. The students are likely to have been introduced to the surface area to volume ratio at GCSE, but understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of this ratio in order to increase this relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson that walks them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of a single-celled and multicellular organisms and this leads into the next part of the lesson, where the adaptations of large organisms to increase this ratio at the exchange surfaces are covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. In addition to the ratio, time is taken to discuss and describe how the maintenance of a steep concentration gradient and a thin membrane are important for the rate of diffusion and again biological examples are used in humans and other organisms to increase the understanding. Fick’s law of diffusion is also introduced as a mechanism to help the students to recall that surface area, concentration difference and thickness of membrane govern the rate of simple diffusion. As well as making links to upcoming topics, prior knowledge checks are used to challenge the students on their knowledge of previously-covered modules which include inorganic ions, organelles, cell membrane transport and tissues.
Human gas exchange system (AQA A-level Biology)
GJHeducationGJHeducation

Human gas exchange system (AQA A-level Biology)

(0)
This lesson describes the gross structure of the human gas exchange system, including the trachea, bronchi, bronchioles and lungs. The PowerPoint and accompanying resources are part of the third lesson in a series of 6 which have been designed to cover the detail of topic 3.2 in the AQA A-level Biology specification which is titled gas exchange and this lesson has been specifically planned to prepare students for the next lesson where the essential features of the alveoli are described. The lesson is filled with a range of activities such as guided discussion periods, exam-style questions (with markschemes) and quiz competitions and these run alongside the slides containing the detailed A-level Biology content to cover the following features: The incomplete rings of cartilage, ciliated pseudostratified columnar epithelium and goblet cells in the trachea The narrowing airways of the primary, secondary and tertiary bronchi The elastic fibres and smooth muscle in the terminal and respiratory bronchioles The pleural cavity and fluid of the lungs When describing the production of mucus by the goblet cells in the trachea, time is taken to consider cystic fibrosis and the inheritance of this autosomal recessive disorder. Students will be supported in working out genotypes from a pedigree tree to prepare them for the topic of inheritance (7.1)
Natural selection and adaptations (WJEC A-level Biology)
GJHeducationGJHeducation

Natural selection and adaptations (WJEC A-level Biology)

(0)
This lesson describes how biodiversity is generated through natural selection and leads to behavioural, anatomical and physiological adaptations. The PowerPoint and accompanying resources have been designed to cover specification points (m) & (n) in AS unit 2, topic 1 of the WJEC A-level Biology specification President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. Moving forwards, 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin to enable them to see the principles of natural selection. This can then be used when describing how the anatomy of the modern-day giraffe has evolved over time. The concept of convergent evolution is introduced and links are made to the need for modern classification techniques as covered earlier in topic 1. Moving forwards, students will understand how natural selection leads to adaptations and a quick quiz competition introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. A series of exam-style questions on the Mangrove family will challenge them to make links to other topics such as osmosis and the mark schemes are displayed to allow them to assess their understanding. The final part of the lesson focuses on the adaptations of the anteater but this time links back to the topic of taxonomy and students have to answer questions about species and classification hierarchy. Due to the extensiveness of this lesson and the detail contained within the resources, it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to deliver this lesson.
Assessing biodiversity (WJEC A-level Biology)
GJHeducationGJHeducation

Assessing biodiversity (WJEC A-level Biology)

(0)
This lesson explains the meaning of biodiversity and describes how it can be assessed in a habitat, in a species level at a genetic level and at a molecular level. The engaging PowerPoint and accompanying resources have been designed to cover points (h-l) in AS unit 2, topic 1 of the WJEC A-level Biology specification but as a lot of genetic content is covered when considering diversity within a species, this lesson can be used as an introduction to the upcoming topics of inheritance A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise key terms from their definitions. This quiz introduces biodiversity, loci, allele and recessive and each of these terms is put into context once introduced. Once biodiversity has been revealed, the students will learn that they are expected to be able to assess the biodiversity within a habitat and within a species and at a molecular level. The variety of alleles in the gene pool of a population increases the genetic diversity so a number of examples are used to demonstrate how the number of phenotypes increases with the number of alleles at a locus. The CFTR gene is used to demonstrate how 2 alleles results in 2 different phenotypes and therefore genetic diversity. Moving forwards, students will discover that more than 2 alleles can be found at a locus and they are challenged to work out genotypes and phenotypes for a loci with 3 alleles (shell colour in snails) and 4 alleles (coat colour in rabbits). Moving forwards, a step by step guide to complete a worked example to calculate a value of D using Simpson’s index of diversity. Students are challenged with a range of exam-style questions where they have to apply their knowledge and all mark schemes are displayed and clearly explained within the PowerPoint to allow students to assess their understanding and address any misconceptions if they arise. The final part of the lesson considers how DNA fingerprinting can be used to assess biodiversity at a molecular level and again a series of exam-style questions are used to challenge the students to apply their newly-acquired knowledge to an unfamiliar situation.
Conservation by zoos & seed banks (Edexcel SNAB)
GJHeducationGJHeducation

Conservation by zoos & seed banks (Edexcel SNAB)

(0)
This lesson evaluates the methods used by zoos and seed banks in the conservation of endangered species. The PowerPoint and accompanying resources have been primarily designed to cover point 4.16 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but as this is potentially the last lesson in this topic, lots of questions and activities have been included that will challenge the students on their knowledge of topic 4 (Biodiversity and Natural Resources). Hours of research went into the planning of this lesson to source interesting examples to increase the relevance of the biological content and although the main focus of the lesson is the two ex situ conservation methods, the lesson begins with a consideration of the importance of the in situ methods that are used in the Lake Télé Community reserve in the Republic of Congo and the marine conservation zone in the waters surrounding Tristan da Cunha. Students will learn how this form of active management conserves habitats and species in their natural environment, with the aim of minimising human impact whilst maintaining biodiversity. To enrich their understanding of ex situ conservation, the well-known examples of ZSL London zoo, Kew Gardens and the Millennium Seed Bank Project in Wakehurst are used. Students will understand how conserving animal species outside of their natural habitat allows for human intervention that ensures the animals are fed and given medical assistance when needed as well as reproductive assistance to increase the likelihood of the successful breeding of endangered species. An emphasis is placed on the desire to reintroduce the species into the wild and the example of some initial successes with the mountain chicken frog in Dominica and Montserrat is discussed. As stated in the specification point, these methods must be evaluated and therefore the issues are also considered and there is a focus on the susceptibility of captive populations to diseases as a result of their limited genetic diversity. The final part of the lesson considers how seed banks can be used to ensure that plant species, which may contain the molecules for medicine development, avoid extinction, and how the plants can be bred asexually to increase plant populations quickly. Due to the extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of allocated A-level teaching time to cover the tasks and content included in the lesson and as explained above, it can also be used as revision of topic 4 content
Autosomal linkage (Edexcel A-level Biology B)
GJHeducationGJHeducation

Autosomal linkage (Edexcel A-level Biology B)

(0)
This lesson explains that autosomal linkage results from the presence of alleles on the same chromosome and uses biological examples to demonstrate this concept. The PowerPoint and accompanying worksheets have been designed to cover point 8.2 (iv) of the Edexcel A-level Biology B specification and supports students in the formation of their descriptions of how these results of these crosses can be explained by the events of meiosis (crossing over) This is a difficult topic which can be poorly understood by students so extra time was taken during the planning to split the concept into small chunks. There is a clear focus on using the number of parent phenotypes and recombinants in the offspring as a way to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the point of contact (chiasma) determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions and a link to the chi squared test which is covered in an upcoming lesson is also made. The main task of the lesson act as understanding check where students are challenged to analyse the results of genetic crosses involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene n humans and also the inheritance of body colour and wing length in Drosophila.
Infectious and non-infectious diseases (CIE A-level Biology)
GJHeducationGJHeducation

Infectious and non-infectious diseases (CIE A-level Biology)

(0)
This lesson explains the difference between non-infectious and infectious diseases and names the pathogens that cause examples of the latter. The PowerPoint and accompanying worksheets have been primarily designed to cover points 10.1 (a & b) of the CIE A-level Biology specification but as this is the first lesson in topic 10, links to upcoming topics such as the immune response and vaccinations are introduced. The lesson begins with a challenge where the students have to use descriptions to recognise CHD, HIV and TB as diseases that are commonly referred to by their abbreviations. This leads into a description of the meaning of disease before the students are challenged to use any prior knowledge of this topic to recognise that CHD is an examples of a non-infectious disease whereas HIV and TB are examples of infectious diseases. Specification point 10.1 (a) states that students should know about sickle cell anaemia and lung cancer so the next section of the lesson focuses on the key details of these diseases and when considering the former, their knowledge of gene mutations, protein synthesis and haemoglobin is tested. viruses - HIV/AIDS, influenza, measles, smallpox bacteria - TB, cholera, protoctista - malaria The infectious diseases shown above are covered by the remainder of this lesson and the differing mechanisms of action of these three types of pathogens are discussed and considered throughout. For example, time is taken to describe how HIV uses a glycoprotein to attach to T helper cells whilst toxins released by bacteria damage the host tissue and the Plasmodium parasite is transmitted from one host to another by a vector to cause malaria. The accompanying worksheets contain a range of exam-style questions, including a mathematical calculation, and mark schemes are embedded into the PowerPoint to allow students to immediately assess their understanding.
Action of antibiotics (Edexcel A-level Biology B)
GJHeducationGJHeducation

Action of antibiotics (Edexcel A-level Biology B)

(0)
This lesson describes the action of bactericidal and bacteriostatic antibiotics, as illustrated by penicillin and tetracycline. The engaging PowerPoint and accompanying resources have been designed to cover point 6.3 (i) of the Edexcel A-level Biology B specification but it has been specifically planned to make continual links to earlier lessons in topic 6 and to protein synthesis as covered in topic 1 The lesson begins by challenging the students to use their general biological knowledge and any available sources to identify the suffixes cidal and static. Students will learn that when the prefix is added, these form the full names of two types of antibiotics. Their understanding of terminology is tested further as they have to recognise that Polymyxin B is an example of a bactericidal antibiotic as its actions would result in the death of the bacterial cell. Time is then taken to describe the action of penicillin and students will learn how inhibitors and modified versions of this antibiotic are used to overcome those bacteria who have resistance. Tetracycline is used as the example of a bacteriostatic antibiotic and students will discover that its prevention of the binding of tRNA that inhibits protein synthesis and this reduction and stopping of growth and reproduction is synonymous with these drugs. Students are challenged on their knowledge of translation and will also be given time for a class discussion to understand that these antibiotics encourage the body’s immune system to overcome the pathogen in natural, active immunity. The final part of the lesson uses a quick quiz competition and a series of exam-style questions to ensure that students can recognise these different types of antibiotics from descriptions.
Penicillin (CIE A-level Biology)
GJHeducationGJHeducation

Penicillin (CIE A-level Biology)

(0)
This lesson outlines how penicillin acts on bacteria and why antibiotics do not affect viruses. The PowerPoint and accompanying resources have been designed to cover point 10.2 (a) of the CIE A-level Biology specification and also introduces the concept of bactericidal and bacteriostatic antibiotics, as illustrated by penicillin and tetracycline. The lesson begins with an engaging task, where the students have to identify the surnames of famous scientists from their descriptions to reveal the surname Fleming. This introduces Sir Alexander Fleming as the microbiologist who discovered penicillin in 1928. Time is taken to describe penicillin as a group of antibiotics that contain a beta-lactam ring in their molecular structure. Using this information and their knowledge of bacterial cell structure from topic 1, the students have to complete a passage describing how penicillin inhibits the formation of cross links in cell wall synthesis. A series of exam-style questions are then used to make links to the upcoming topic of antibiotic resistance. The next part of the lesson focuses on the differences between bactericidal and bacteriostatic antibiotics and the students will learn that penicillin is bactericidal as the weakening of the cell wall leads to lysis and death. Tetracycline is used as the example of a bacteriostatic antibiotic and students will discover that it is the prevention of the binding of tRNA that inhibits protein synthesis and that this reduction and prevention of growth and reproduction is synonymous with these antimicrobial agents. Students are challenged on their knowledge of translation and will also be given time for a class discussion to understand that these antibiotics work in tandem the body’s immune system to overcome the pathogen The final part of the lesson explains why antibiotics are ineffective against viruses.
Topic B1:  Key concepts in Biology (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic B1: Key concepts in Biology (Edexcel GCSE Combined Science)

6 Resources
This bundle of 7 lessons covers the majority of the content in Topic B1 (Key concepts in Biology) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: Animal cells Plant cells Bacterial cells Specialised cells Changes in microscopic technology Number, size and scale The relationship between quantitative units Enzyme properties and action Enzyme activity Osmosis Active transport All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.