Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1127k+Views

1931k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Mitosis (Edexcel A-level Biology B)
GJHeducationGJHeducation

Mitosis (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the events of the cell cycle so that students can understand how the genetic material behaves in interphase, mitosis and cytokinesis. The detailed PowerPoint and accompanying resources have been designed to cover specification points 2.3 (i), (ii) and (iii) as detailed in the Edexcel A-level Biology B specification. Depending upon the exam board taken at GCSE, the knowledge and understanding of mitosis and the cell cycle will differ considerably between students and there may be a number of misconceptions. This was considered at all points during the planning of the lesson and to address existing errors, key points are emphasised throughout. The cell cycle is introduced at the start of the lesson and the quantity of DNA inside the parent cell is described as diploid and as 2n. A quiz competition has been written into the lesson and this runs throughout, challenging the students to identify the quantity of DNA in the cell (in terms of n) at different points of the cycle. Moving forwards, the first real focus is interphase and the importance of DNA replication is explained so that students can initially recognise that there are pairs of identical sister chromatids and then can understand how they are separated later in the cycle. The main part of the lesson focuses on prophase, metaphase, anaphase and telophase and describes how the chromosomes behave in these stages. An exam style question will check on their knowledge of the organelles from 2.1 and this acts to remind them that centrioles are responsible for the production of the spindle apparatus, Students will understand how the cytoplasmic division that occurs in cytokinesis results in the production of genetically identical daughter cells. This leads into a series of understanding and application questions where students have to identify the various roles of mitosis in living organisms as well as tackling a Maths in a Biology context question. The lesson concludes with a final round of MITOSIS SNAP where they only shout out this word when a match is seen between the name of a phase, an event and a picture
Chi-squared test (Edexcel A-level Biology B)
GJHeducationGJHeducation

Chi-squared test (Edexcel A-level Biology B)

(0)
This lesson guides students through the use of the chi-squared test to determine the significance of the difference between observed and expected results. It is fully-resourced with a detailed PowerPoint and differentiated worksheets that have been designed to cover point 8.2 (vi) of the Edexcel A-level Biology B specification The lesson includes a step-by-step guide to demonstrates how to carry out the test in small sections. At each step, time is taken to explain any parts which could cause confusion and helpful hints are provided to increase the likelihood of success in exam questions on this topic. Students will understand how to use the phenotypic ratio to calculate the expected numbers and then how to find the critical value in order to compare it against the chi-squared value. A worked example is used to show the working which will be required to access the marks and then the main task challenges the students to apply their knowledge to a series of questions of increasing difficulty. This is the final lesson of topic 8.2 (transfer of genetic information) and links are made throughout the lesson to earlier parts of this topic such as dihybrid inheritance as well as to earlier topics like meiosis
Control of ventilation rate (Edexcel A-level Biology A)
GJHeducationGJHeducation

Control of ventilation rate (Edexcel A-level Biology A)

(0)
This detailed lesson describes how changes in ventilation rate are brought about to allow for the delivery of oxygen and the removal of carbon dioxide. The engaging PowerPoint and accompanying resources have been designed to cover the second part of point 7.9 (ii) in the Pearson Edexcel A-level Biology A specification. The previous lesson described the control of heart rate so this lesson has been written to tie in with this and to use this knowledge to further the students understanding of the control of ventilation rate. The lesson begins with a focus on the muscles involved in ventilation, specifically the diaphragm and external intercostal muscles, so that students can understand how their contraction results in an increase in the volume of the thoracic cavity. Boyle’s law is briefly introduced to allow students to recognise the relationship between volume and pressure so that the movement of air with the pressure gradient can be described. Time is then taken to consider the importance of inhalation and an exam-style question challenges the students to explain that a constant supply of oxygen to the alveoli is needed to maintain a steep concentration gradient with the surrounding capillaries. The students are then tasked with writing a description of exhalation at rest using the description of inhalation as their guide. The rest of the lesson focuses on the mechanisms involved in increasing the rate and depth of breathing during exercise. Students will use their knowledge of the control of heart rate to recall that chemoreceptors detect changes in oxygen and carbon dioxide and blood pH and that the medulla oblongata processes the sensory information that it receives before coordinating a response. The final task challenges them to use the information provided in this lesson and the previous one to order 10 detailed descriptions so they can form a complete passage about this control system.
Topic 2: Cells (AQA A-level Biology)
GJHeducationGJHeducation

Topic 2: Cells (AQA A-level Biology)

19 Resources
This bundle contains 19 PowerPoint lessons which are highly-detailed and are fully-resourced with differentiated worksheets. Intricate planning means that the wide range of activities included in these lessons will engage and motivate the students, check on their current understanding and their ability to make links to previously covered topics and most importantly will deepen their understanding of the following specification points in topic 2 (Cells) of the AQA A-level Biology specification: Structure and function of the organelles in eukaryotic cells The specialised cells in complex, multicellular organisms The structure of prokaryotic cells The structure of viruses which are acellular and non-living The principles and limitations of optical, transmission electron and scanning electron microscopes Measuring the size of an object under an optical microscope Use of the magnification formula The behaviour of chromosomes during the stages of the cell cycle Binary fission The basic structure of cell membranes The role of phospholipids, proteins, glycoproteins, glycolipids and cholesterol Simple diffusion Facilitated diffusion Osmosis, explained in terms of water potential The role of carrier proteins and the hydrolysis of ATP in active transport Co-transport as illustrated by the absorption of sodium ions and glucose by the cells lining the mammalian ileum Recognition of different cells by the immune system The identification of pathogens from antigens The phagocytosis of pathogens The cellular response involving T lymphocytes The humoral response involving the production of antibodies by plasma cells The structure of an antibody The roles of plasma cells and memory cells in the primary and secondary immune response The use of vaccines to protect populations The differences between active and passive immunity The structure of the human immunodeficiency virus and its replication in helper T cells How HIV causes the symptoms of AIDS Why antibiotics are ineffective against viruses The use of antibodies in the ELISA test If you would like to sample the quality of these lessons, then download the eukaryotic animal cells, viruses, microscopes, osmosis, lymphocytes, HIV and AIDS lessons as these have been shared for free.
Genetic diversity (AQA A-level Biology)
GJHeducationGJHeducation

Genetic diversity (AQA A-level Biology)

(1)
This fully-resourced lesson describes genetic diversity as the number of genes in a population and explains how this is increased by polymorphic gene loci. The engaging PowerPoint and accompanying differentiated resources have been primarily designed to cover the first part of point 4.4 of the AQA A-level Biology specification but also introduces inheritance and codominance so that students are prepared for these sub-topics when covering topic 7 in the following year. In order to understand that 2 or more alleles can be found at a gene loci, students need to be confident with genetic terminology, so the start of the lesson focuses on key terms including gene, locus, allele, recessive, genotype and phenotype. A number of these will have been met at GCSE, as well as during the earlier lessons in topic 4 when considering meiosis, so a quick quiz competition is used to check on their recall of the meanings of these terms. The CFTR gene is then used as an example to demonstrate how 2 alleles results in 2 different phenotypes and therefore genetic diversity. Moving forwards, students will discover that more than 2 alleles can be found at a locus and they are challenged to work out genotypes and phenotypes for a loci with 3 alleles (shell colour in snails) and 4 alleles (coat colour in rabbits). At this point, the students are introduced to codominance and again they are challenged to apply their understanding to a new situation by working out the number of phenotypes in the inheritance of blood groups. The lesson concludes with a brief consideration of the HLA gene loci, which is the most polymorphic loci in the human genome, and students are challenged to consider how this sheer number of alleles can affect the chances of tissue matches in organ transplantation.
Specific immune response (OCR A-level Biology)
GJHeducationGJHeducation

Specific immune response (OCR A-level Biology)

(0)
This fully-resourced lesson describes the structure, different roles and modes of action of the B and T lymphocytes in the specific immune response. The detailed PowerPoint and accompanying resources have been designed to cover point 4.1.1 (f) as detailed in the OCR A-level Biology A specification and the structure of antibodies and the roles of memory cells is also briefly introduced so that students are prepared for an upcoming lesson on the secondary immune response (4.1.1 g) Antigen presentation was introduced at the end of the previous lesson so the task at the start of this lesson challenges students to recognise the name of this process and then they have to spot the errors in the passage that describes the details of this event. This reminds them that contact between the APC and T lymphocytes is necessary to elicit a response which they will come to recognise as the cellular response. A series of quick quiz rounds reveals key terms in a memorable way and one that is introduced is helper T cells. Time is then taken to describe the importance of cell signalling for an effective response and students will learn how the release of chemicals by these cells activates other aspects of the response. The role of the killer T cells and their production of cytotoxins is also described before an exam-style question is used to check on their understanding at this point of the lesson. This leads into the section of the lesson that deals with the humoral response and students will understand how this involves the antibodies that are produced by the plasma cells that are the result of clonal selection and expansion. The T and B memory cells are also introduced so that students can understand how they are retained in the body even after the pathogen has been overcome and will play a critical role in the development of immunity. The remainder of the lesson focuses on the role of the antibodies and the attachment of phagocytes to opsonins
Antibodies & memory cells (CIE A-level Biology)
GJHeducationGJHeducation

Antibodies & memory cells (CIE A-level Biology)

(0)
This lesson explains the importance of memory cells in the development of immunity and describes how the structure of antibodies is related to function. The PowerPoint and accompanying resources have been designed to cover specification points 11.1 (e) and 11.2 (a) as detailed in the CIE A-level Biology specification. As memory B cells differentiate into plasma cells that produce antibodies when a specific antigen is re-encountered, it was decided to link these two topic points in one lesson. The lesson begins by checking on the students incoming knowledge to ensure that they recognise that B cells differentiate into plasma cells and memory cells. This was introduced in a previous lesson on the specific immune response and students must be confident in their understanding if the development of immunity is to be understood. A couple of quick quiz competitions are then used to introduce key terms so that the structure of antibodies in terms of polypeptide chains, variable and constant regions and hinge regions are met. Time is taken to focus on the variable region and to explain how the specificity of this for a particular antigen allows neutralisation and agglutination to take place. The remainder of the lesson focuses on the differences between the primary and secondary immune responses and a series of exam-style questions will enable students to understand that the quicker production of a greater concentration of these antibodies in the secondary response is due to the retention of memory cells.
Fibrous & globular proteins (WJEC A-level Biology)
GJHeducationGJHeducation

Fibrous & globular proteins (WJEC A-level Biology)

(0)
This engaging lesson describes the relationship of the fibrous and globular structure of proteins to their function. The PowerPoint and accompanying resource have been primarily designed to cover specification point (j) as detailed in AS unit 1, topic 1 of the WJEC A-level Biology course but due to the detailed coverage of haemoglobin, the start of this lesson could also be used when teaching lessons that cover specification points in AS unit 2, topic 3 on adaptations for transport By the end of the lesson, students will be able to describe that the interactions of the hydrophobic and hydrophilic R groups results in different shapes which differ in their solubility in water and be able to explain the importance of this property with reference to the individual functions of proteins, specifically collagen and haemoglobin. They will also be able to name key individual details for each protein, such as haemoglobin being a conjugated protein and collagen having repeating units and being wound into a triple helix Extra time has gone into the planning of this lesson to ensure that links are continuously made to previous topics such as amino acids and the levels of protein structure as well as to upcoming topics
Net primary productivity (Edexcel A-level Biology A)
GJHeducationGJHeducation

Net primary productivity (Edexcel A-level Biology A)

(0)
This lesson describes the relationship between gross and net primary productivity and plant respiration and explains how to calculate NPP. The PowerPoint and accompanying resources have been designed to cover points 5.10 (i) and (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. Due to the fact that the productivity of plants is dependent on photosynthesis, a series of exam-style questions have been written into the lesson which challenge the students to explain how the structure of the leaf as well as the light-dependent and light-independent reactions are linked to GPP. All of the exam questions have displayed mark schemes which are included in the PowerPoint to allow students to immediately assess their understanding. A number of quick quiz competitions as well as guided discussion points are used to introduce the formulae to calculate NPP and N and to recognise the meaning of the components. Once again, this is immediately followed by the opportunity to apply their understanding to selected questions. As well as linking to photosynthesis from earlier in topic 5, this lesson has been specifically planned to challenge students on their understanding of ecosystem terminology from the start of the topic as well as preparing them for the next lesson on the efficiency of biomass and energy transfer
Random and systematic errors REVISION (AQA GCSE)
GJHeducationGJHeducation

Random and systematic errors REVISION (AQA GCSE)

(0)
This lesson revisits the topic of random and systematic errors and also challenges students on other scientific skills such as identifying variables. Students tend to find this topic confusing, so the PowerPoint and accompanying resources have been designed to support them to identify whether an error is random or systematic and then to understand what to do next. The lesson guides the students through a series of real life examples and shows them how to spot each type of error. There is a considerable mathematical element to this lesson, including the calculation of means or missing values in a table. The lesson concludes with a series of exam-style questions where the students have to apply their understanding of identifying errors, variables and calculating means.
Topics 4.4 - 4.7 (AQA A-level Biology)
GJHeducationGJHeducation

Topics 4.4 - 4.7 (AQA A-level Biology)

9 Resources
These 9 lessons are highly detailed and are filled with a wide range of tasks that will engage the students whilst covering the following specification points in topics 4.4, 4.5, 4.6 and 4.7 of the AQA A-level Biology specification: 4.4 Genetic diversity as the number of different alleles of genes in a population and a factor enabling natural selection to occur The principles of natural selection in the evolution of populations Directional and stabilising selection Natural selection results in anatomical, physiological or behavioural adaptations 4.5 Two organisms belong to the same species if they are able to produce fertile offspring The taxonomic hierarchy comprising domain, kingdom, phylum, class, order, family, genus and species The use of the binomial name to identify species 4.6 Biodiversity can relate to a range of habitats Species richness Calculating an index of diversity The balance between conservation and farming 4.7 Investigating genetic diversity with, or between species, by comparing observable characteristics or nucleic acids and the structure of proteins Calculating and interpreting the mean and standard deviation If you download the natural selection and standard deviation lessons which have been shared for free then you will be able to see the quality of lessons included in this bundle
Rapid gas exchange (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Rapid gas exchange (Edexcel Int. A-level Biology)

(0)
This lesson describes how the structure of the mammalian lung is adapted for rapid gaseous exchange. The engaging PowerPoint has been designed to cover point 2.1 (iii) of the Edexcel International A-level Biology specification and focuses on the essential features of the alveolar epithelium as well as the mechanism of ventilation to maintain a steep concentration gradient for the simple diffusion of oxygen and carbon dioxide. Gas exchange at the alveoli is a topic that was covered at GCSE and considered during the previous lessons in topic 2.1 so this lesson has been written to challenge the recall of that knowledge and to build on it. The main focus of the first half of the lesson is the type of epithelium found lining the alveoli and students will discover that a single layer of flattened cells known as simple, squamous epithelium acts to reduce the diffusion distance. The following features of the alveolar epithelium are also covered: Surface area Moist lining Production of surfactant The maintenance of a steep concentration gradient is the role of the respiratory system and the next part of the lesson focuses on the diaphragm and intercostal muscles. As the mechanism of inhalation is a cascade of events, the details of this process are covered in a step by step format using bullet points. At each step, time is taken to discuss the key details which includes an introduction to Boyle’s law that reveals the inverse relationship between volume and pressure. It is crucial that students are able to describe how the actions of the diaphragm, external intercostal muscles and ribcage result in an increased volume of the thoracic cavity and a subsequent decrease in the pressure, which is below the pressure outside of the body. At this point, their recall of the structures of the mammalian gas exchange system is tested, to ensure that they can describe the pathway the air takes on moving into the lungs.
Nucleotides (OCR A-level Biology)
GJHeducationGJHeducation

Nucleotides (OCR A-level Biology)

(1)
This detailed lesson describes the structure of a nucleotide and a phosphorylated nucleotide and explains how polynucleotides are synthesised and broken down. The engaging PowerPoint has been designed to cover points [a], [b] and [c] of module 2.1.3 as detailed in the OCR A-level Biology A specification and links are made throughout to earlier topics such as biological molecules. Students were introduced to the term monomer and nucleotide in the previous module, so the start of the lesson challenges them to recognise this latter term when only the letters U, C and T are shown. This has been designed to initiate conversations about why only these letters were used so that the nitrogenous bases can be discussed later in greater detail. Moving forwards, students will learn that a nucleotide is the monomer to a polynucleotide and that deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are two examples of this type of polymer. The main part of the lesson has been filled with various tasks that explore the structural similarities and structural differences between DNA and RNA. This begins by describing the structure of a nucleotide as a phosphate group, a pentose sugar and a nitrogenous base. Time is taken to consider the details of each of these three components which includes the role of the phosphate group in the formation of a phosphodiester bond between adjacent nucleotides on the strand. At this point students are challenged on their understanding of condensation reactions and have to identify how the hydroxyl group associated with carbon 3 is involved along with the hydroxyl group of the phosphoric acid molecule. A number of quiz rounds are used during this lesson, as a way to introduce key terms in a fun and memorable way. One of these rounds introduces adenine and guanine as the purine bases and thymine, cytosine and uracil as the pyrimidine bases and the students are shown that their differing ring structures can be used to distinguish between them. The remainder of the lesson focuses on ADP and ATP as phosphorylated nucleotides and links are made to the hydrolysis of this molecule for energy driven reactions in cells such as active transport
Preparing slides & staining (OCR A-level Biology)
GJHeducationGJHeducation

Preparing slides & staining (OCR A-level Biology)

(1)
This lesson describes how to prepare and examine microscope slides and the use of staining in light microscopy. The PowerPoint and accompanying resources have been designed to cover points 2.1.1 (b & c) of the OCR A-level Biology A specification and describe how the eyepiece graticule and stage micrometer are used to measure the size of an object with a light microscope and the use of eosin and methylene blue. The main task of this lesson involves a step by step guide which walks students through the methodology and the use of the scale on the stage micrometer to identify the size of the divisions of the eyepiece graticule and this will need them to convert between units. Moving forwards, the students are challenged to apply this method to a series of exam-style questions and the mark scheme is displayed on the PowerPoint so that they can assess their understanding. In the last lesson, they were briefly introduced to the idea that some specimens need to be stained as light passes completely through transparent samples and the remainder of the lesson builds on this knowledge. Students will learn that cell populations, structures within cells and biological tissues can be distinguished using stains and a series of questions will challenge them to make links to biological molecules, organelles and infections. Links are also made to the upcoming topic of epithelial tissue in the respiratory system. This lesson has been specifically written to tie in with the previous lesson on light and electron microscopes and 2 rounds of the sub-module quiz competition are found in this lesson.
Glycogen, starch & cellulose (Edexcel A-level Biology B)
GJHeducationGJHeducation

Glycogen, starch & cellulose (Edexcel A-level Biology B)

(1)
This detailed and fully-resourced lesson describes the relationship between the structure and function of the polysaccharides: glycogen, starch and cellulose. The engaging PowerPoint and accompanying resources have been designed to cover point 1.1 (iv) as it is detailed in the Edexcel A-level Biology B specification and clear links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. By the end of this lesson, students should understand how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also whether it spirals or not. A range of activities are used to motivate and engage the students as they discover that glycogen is stored in liver and muscle cells, which it is able to do because of its compact structure. They are encouraged to discuss why the branched structure of this polysaccharide means that it can act as an immediate source of energy and they will recognise that hydrolysis reactions at the multiple ends of this chain will release glucose. Following on from the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses once they learn more about starch and cellulose. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. In the final part of the lesson, time is taken to focus on the formation of cellulose microfibrils and macrofibrils to explain how plant cells have the additional strength needed to support the whole plant. Due to the detail included in this lesson, it is estimated that it will take in excess of 2 hours of allocated teaching time to complete
The role of haemoglobin (CIE International A-level Biology)
GJHeducationGJHeducation

The role of haemoglobin (CIE International A-level Biology)

(1)
This engaging lesson looks at the role of haemoglobin in carrying oxygen and carbon dioxide. The PowerPoint has been designed to cover point 8.1 (f) of the CIE International A-level Biology specification and includes references to the role of carbonic anhydrase and the formation of haemoglobinic acid and carbaminohaemoglobin. The lesson begins with a version of the quiz show Pointless to introduce haemotology as the study of the blood conditions. Students are told that haemoglobin has a quaternary structure and are challenged to use their prior knowledge of biological molecules to determine what this means for the protein. They will learn that each of the 4 polypeptide chains contains a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. The remainder of the lesson looks at the different ways that carbon dioxide is transported around the body that involve haemoglobin. Time is taken to look at the dissociation of carbonic acid into hydrogen ions so that students can understand how this will affect the affinity of haemoglobin for oxygen in an upcoming lesson on the Bohr effect.
Control of blood glucose concentration (CIE IGCSE Biology SUPPLEMENT)
GJHeducationGJHeducation

Control of blood glucose concentration (CIE IGCSE Biology SUPPLEMENT)

(1)
This resource, which consists of an engaging and detailed PowerPoint and a differentiated worksheet, has been designed to cover the content in the supplement section of topic 14.4 in the CIE IGCSE Biology specification, specifically the control of blood glucose concentration and the symptoms and treatment of diabetes type I. A wide range of activities are found across the lesson which will engage and motivate the students whilst the important content is covered and understanding and previous knowledge checks are included at regular points so students can assess their progress. The following content is covered across this resource: The release of insulin by the pancreas when high glucose levels are detected The role of the liver and muscle cells in the conversion of glucose to glycogen Negative feedback in this homeostatic control mechanism Diagnosis and treatment of type I diabetes Type I diabetes as an autoimmune disease (link to topic 10) The release of glucagon and the role of the liver cells when blood glucose concentration is low As shown above, links are made to other topics where possible so students can recognise the importance of making connections between related subjects. This lesson has been designed for students studying on the CIE IGCSE Biology course but is suitable for older students who are looking at this topic at A-level and need to recall the key details
Drawing graphs (Scientific skills)
GJHeducationGJHeducation

Drawing graphs (Scientific skills)

(0)
This engaging and detailed lesson presentation (43 slides) uses a step by step guide to take students through the important scientific skill of drawing graphs to represent data and address all the misconceptions and misunderstandings that often accompany this topic. The lesson begins by explaining to the students how to decide whether data should be represented on a line graph or a bar chart and a competition called "To BAR or not to BAR" is used to allow them to check their understanding while maintaining motivation. Moving forwards, students are shown a 6 step guide to drawing a line graph. Included along the way are graphs that are wrong and explanations as to why so that students can see what to avoid. There are continuous progress checks and a homework is also included as part of the lesson. This lesson is written for students of all ages who are studying Science.
The Krebs Cycle (OCR A-level Biology)
GJHeducationGJHeducation

The Krebs Cycle (OCR A-level Biology)

(0)
This fully-resourced lesson looks at the process and site of the Krebs cycle and explains the importance of decarboxylation, dehydrogenation, the reduction of NAD and FAD and substrate level phosphorylation. The engaging and detailed PowerPoint and accompanying resource have both been designed to cover point 5.2.2 (e) of the OCR A-level Biology A specification and includes the formation of citrate from the acetyl group of acetyl CoA and oxaloacetate and the regeneration of this four carbon molecule. The lesson begins with a version of the Impossible game where students have to spot the connection between 8 of the 9 terms and will ultimately learn that this next stage is called the Krebs cycle. The main part of the lesson challenges the students to use descriptions of the main steps of the cycle to continue their diagram of the oxidation-reduction reactions. Students are continually exposed to key terminology such as decarboxylation and dehydrogenation and they will learn where carbon dioxide is lost and reduced NAD and FAD are generated. They will also recognise that ATP is synthesised by substrate level phosphorylation. The final task challenges them to apply their knowledge of the cycle to work out the numbers of the different products and to calculate the number of ATP that must be produced in the next stage if the theoretical yield of 32ATP is to be achieved. This lesson has been designed to tie in with the other uploaded lessons on glycolysis, anaerobic respiration, the Link reaction, oxidative phosphorylation and respiratory substrates
Glycolysis (OCR A-level Biology)
GJHeducationGJHeducation

Glycolysis (OCR A-level Biology)

(0)
This fully-resourced lesson looks at the process and site of glycolysis and explains how the phosphorylation of glucose and the production and oxidation of triose phosphate results in 2 molecules of pyruvate. The engaging PowerPoint and accompanying differentiated resources have been designed to cover point 5.2.2 © of the OCR A-level Biology A specification. The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation, splitting and oxidation are the three main stages that need to be known for this specification. Time is taken to explain the key details of each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain, is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. This lesson has been written to tie in with the other uploaded lessons on the Link reaction, Krebs cycle, oxidative phosphorylation and anaerobic respiration