Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1127k+Views

1931k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic 1.4.2: Many proteins are enzymes (AQA A-level Biology)
GJHeducationGJHeducation

Topic 1.4.2: Many proteins are enzymes (AQA A-level Biology)

5 Resources
Each of the five lessons included in this lesson bundle are fully-resourced and have been designed to engage and motivate the students whilst covering the following points that are detailed in topic 1.4.2 of the AQA A-level Biology specification: Each enzyme lowers the activation energy of the reaction it catalyses The induced-fit model of enzyme action The specificity of enzymes The effects of temperature, pH, enzyme concentration, substrate concentration and concentration of competitive and non-competitive inhibitors on the rate of enzyme-controlled reactions The lessons have been planned to come as a bundle and references are continually made to previous lessons in the topic to support the students in making the important links between structure, properties and actions of these globular proteins.
Concentration & enzyme activity (AQA A-level Biology)
GJHeducationGJHeducation

Concentration & enzyme activity (AQA A-level Biology)

(0)
This fully-resourced lesson describes how enzyme and substrate concentration can affect the rate of an enzyme-controlled reaction. The PowerPoint and accompanying resources are the 4th in a series of 5 lessons which cover the detail of point 1.4.2 of the AQA A-level Biology specification. Transcription and translation are also introduced and therefore this lesson could be used in preparation for the detailed lessons in topic 4.2. The first part of the lesson describes how an increase in substrate concentration will affect the rate of reaction when a fixed concentration of enzyme is used. Time is taken to introduce limiting factors and students will be challenged to identify substrate concentration as the limiting factor before the maximum rate is achieved and then they are given discussion time to identify the possible factors after this point. A series of exam-style questions are used throughout the lesson and the mark schemes are displayed to allow the students to assess their understanding and for any misconceptions to be immediately addressed. Moving forwards, the students have to use their knowledge of substrate concentration to construct a graph to represent the relationship between enzyme concentration and rate of reaction and they have to explain the different sections of the graph and identify the limiting factors. The final section of the lesson describes how the availability of enzymes is controlled in living organisms. Students will recognise that this availability is the result of enzyme synthesis and enzyme degradation and a number of prior knowledge checks challenge students on their knowledge of proteins as covered in topic 1.4.1 Please note that this lesson explains the Biology behind the effect of concentration on enzyme-controlled reactions and not the methodology involved in carrying out such an investigation as this is covered in a core practical lesson.
Conduction along myelinated axons (Edexcel A-level Biology B)
GJHeducationGJHeducation

Conduction along myelinated axons (Edexcel A-level Biology B)

(0)
This fully-resourced lesson explains why the speed of transmission along myelinated axons is greater than along non-myelinated axons. The PowerPoint and accompanying resources have been designed to cover point 9.5 (iii) of the Edexcel A-level Biology B specification which states that students should understand the role of saltatory conduction in the transmission of action potentials. A wide range of activities have been written into this resource to maintain the motivation of the students whilst ensuring that the detail is covered in real depth. Interspersed with the activities are understanding checks and prior knowledge checks to allow the students to not only assess their understanding of the current topic but also challenge themselves to make links to earlier topics such as the movement of ions across membranes and biological molecules. Time at the end of the lesson is also given to future knowledge such as the involvement of autonomic motor neurones in the stimulation of involuntary muscles. Over the course of the lesson, students will learn and discover the myelin sheath wrapped around the axons of sensory and motor neurones allows these neurones to conduct impulses quickly between receptors and the CNS and between the CNS and effectors. There is a focus on this myelin sheath and specifically how the insulation is not complete all the way along which leaves gaps known as the nodes of Ranvier which allow the entry and exit of ions. Saltatory conduction is poorly understood (and explained) by a lot of students so time is taken to look at the way that the action potential jumps between the nodes and this is explained further by reference to local currents. The rest of the lesson focuses on the other two factors which are axon diameter and temperature and students are challenged to discover these two by focusing on the vampire squid.
Excitatory & inhibitory postsynaptic potentials (Edexcel A-level Biology B)
GJHeducationGJHeducation

Excitatory & inhibitory postsynaptic potentials (Edexcel A-level Biology B)

(0)
This detailed lesson describes the formation and effects of excitatory and inhibitory postsynaptic potentials . The PowerPoint has been designed to cover point 9.5 (v) of the Edexcel A-level Biology B specification. This is a topic which is generally poorly understood by students or brushed over so considerable time has been taken to design the activities to motivate the students so that the content is memorable whilst still being covered in detail. Links are continually made to earlier topics in this topic such as synapses and generator potentials but also to topics covered in the previous year. The lesson begins by challenging the students to recognise a description of generator potential and they will then discover that this is also known as an EPSP. Students will recall that a small depolarisation may not lead to the opening of the voltage gated channels and therefore the full depolarisation which is needed for the initiation of an action potential and will discuss how this problem could be overcome. Lots of discussion points like this are included in the lesson to encourage the students to challenge and debate why a particular process of mechanism occurs. Students will therefore learn that EPSPs can be combined and this is known as summation. A quiz round is used to introduce temporal and spatial summation. Moving forwards, students are presented with a number of examples where they have to decide why type of summation is involved. Again, the lesson has been written to include real-life examples such as chronic pain conditions so the chances of the content sticking is increased. The final part of the lesson introduces IPSPs and the effect of these on summation and action potentials is discussed.
Topic 9.5: Nervous transmission (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 9.5: Nervous transmission (Edexcel A-level Biology B)

4 Resources
This detailed bundle contains 4 lesson PowerPoints and their accompanying resources that cover the following specification points found within topic 9.5 (Nervous transmission) of the Edexcel A-level Biology B specification: The transport of sodium and potassium ions across the axon membrane results in resting potential The formation of an action potential and its propagation along an axon The role of saltatory conduction The structure and function of a synapse The formation and effects of excitatory and inhibitory postsynaptic potentials The wide range of tasks, which include exam-style questions with detailed mark schemes, focused discussion points and quiz competitions which introduce key terms and values, will engage and motivate the students whilst the content is covered in the detail required at A-level If you would like to sample the quality of the lessons included in this bundle, then download the resting and action potentials lesson as this has been shared for free
Eukaryotic cells (OCR A-level Biology)
GJHeducationGJHeducation

Eukaryotic cells (OCR A-level Biology)

(0)
This fully-resourced lesson describes the ultrastructure of eukaryotic cells and the functions of the different cellular components. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 2.1.1 (g) & (i) of the OCR A-level Biology A specification and therefore also describes the interrelationship between the organelles involved in the production and secretion of proteins. As cells are the building blocks of living organisms, it makes sense that they would be heavily involved in all 6 modules in the OCR course and intricate planning has ensured that links to the lessons earlier in module 2.1.1 are made as well as to the upcoming modules. The lesson uses a wide range of activities, that include exam-style questions, class discussion points and quick quiz competitions, to maintain motivation and engagement whilst describing the relationship between the structure and function of the following organelles: nucleus nucleolus centrioles ribosomes rough endoplasmic reticulum Golgi apparatus lysosomes smooth endoplasmic reticulum mitochondria cell surface membrane vacuole chloroplasts plasmodesmata Details of the cilia and flagella are covered in the lesson on the importance of the cytoskeleton. All of the worksheets have been differentiated to support students of differing abilities whilst maintaining challenge Due to the detail that is included in this lesson, it is estimated that it will take in excess of 3 hours of allocated A-level teaching time to go through all of the tasks
Photosynthesis (Edexcel A-level Biology A)
GJHeducationGJHeducation

Photosynthesis (Edexcel A-level Biology A)

4 Resources
The 4 lesson PowerPoints included in this bundle are highly detailed and along with their accompanying resources, they have been designed to engage and motivate the students whilst the Pearson Edexcel A-level Biology A (Salters Nuffield) specification points concerning photosynthesis are covered. These specification points are 5.5, 5.7, 5.8 (i) & (ii) and 5.9 and these state that students should: Understand the overall reaction of photosynthesis as requiring energy from light to split apart the strong bonds in water molecules, storing the hydrogen in a fuel (glucose) by combining it with carbon dioxide and releasing oxygen into the atmosphere. Understand the light-dependent reactions of photosynthesis including how light energy is trapped by exciting electrons in chlorophyll and the role of these electrons in generating ATP, reducing NADP in photophosphorylation and producing oxygen through photolysis of water Understand the light-independent reactions as reduction of carbon dioxide using the products of the light-dependent reactions (carbon fixation in the Calvin cycle, the role of GP, GALP, RuBP and RUBISCO). Know that the products are simple sugars that are used by plants, animals and other organisms in respiration and the synthesis of new biological molecules (polysaccharides, amino acids, lipids and nucleic acids). Understand the structure of chloroplasts in relation to their role in photosynthesis. If you would like to sample the quality of these lessons, then please download the light-independent reactions lesson as this has been shared for free
Development of immunity (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Development of immunity (Edexcel Int. A-level Biology)

(0)
This lesson describes how individuals may develop immunity, focusing on the different types that are active, passive, natural and artificial. The engaging PowerPoint and accompanying resources have been designed to cover point 6.1 of the Edexcel International A-level Biology specification and there is also a description and discussion of herd immunity to increase the relevance to the current epidemic with COVID-19. The lesson begins with a series of exam-style questions which challenge the students to demonstrate and apply their understanding of the immune response as covered in the previous lessons in this topic. In answering and assessing their answers to these questions, the students will recognise the differences between the primary and secondary immune responses and then a discussion period is included to encourage them to consider how the production of a larger concentration of antibodies in a quicker time is achieved. The importance of antibodies and the production of memory cells for the development of immunity is emphasised and this is continually referenced as the lesson progresses. The students will learn that this response of the body to a pathogen that has entered the body through natural processes is natural active immunity. Moving forwards, time is taken to look at vaccinations as an example of artificial active immunity. Another series of questions focusing on the MMR vaccine will challenge the students to explain how the deliberate exposure to antigenic material activates the immune response and leads to the retention of memory cells. A quick quiz competition is used to introduce the variety of forms that the antigenic material can take along with examples of diseases that are vaccinated against using these methods. The eradication of smallpox is used to describe the concept of herd immunity and the students are given time to consider the scientific questions and concerns that arise when the use of this pathway is a possible option for a government. The remainder of the lesson looks at the different forms of passive immunity and describes the drawbacks in terms of the need for a full response if a pathogen is re-encountered.
Biodiversity (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Biodiversity (Edexcel Int. A-level Biology)

(0)
This lesson describes biodiversity and explains how it can be calculated within a species, a habitat and how it can be compared between habitats. The detailed PowerPoint and accompanying resources have been designed to cover points 4.16, 4.17 & 4.18 in unit 2 of the Edexcel International A-level Biology specification and the meaning of endemism is also explained. A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise key terms from their definitions. This quiz will introduce species, population, biodiversity, endemic, heterozygote and natural selection and each of these terms is put into context once introduced. Once biodiversity has been revealed, the students will learn that they are expected to be able to measure biodiversity within a habitat, within a species and within different habitats so that they can be compared. The rest of the lesson uses step by step guides, discussion points and selected tasks to demonstrate how to determine species richness, the heterozygosity index and an index of diversity. Students are challenged with a range of exam-style questions where they have to apply their knowledge and all mark schemes are displayed and clearly explained within the PowerPoint to allow students to assess their understanding and address any misconceptions if they arise.
Bacteriostatic & bactericidal antibiotics (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

Bacteriostatic & bactericidal antibiotics (Pearson Edexcel A-level Biology A)

(0)
This fully-resourced lesson introduces bacteriostatic and bactericidal antibiotics and describes their differences, focusing on their modes of action. The engaging PowerPoint and accompanying resources have been designed to cover point 6.14 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but also makes continual links to earlier lessons in topic 6 as well as related topics from the previous year such as protein synthesis from topic 2 The lesson begins by challenging the students to use their knowledge of the previous topic 6 lessons to identify the suffixes cidal and static. Students will learn that when the prefix is added, these form the full names of two types of antibiotics. Their understanding of terminology is tested further as they have to recognise that Polymyxin B is an example of a bactericidal antibiotic as its actions would result in the death of the bacterial cell. Tetracycline is used as the example of a bacteriostatic antibiotic and students will discover that its prevention of the binding of tRNA that inhibits protein synthesis and this reduction and stopping of growth and reproduction is synonymous with these drugs. Students are challenged on their knowledge of translation and will also be given time for a class discussion to understand that these antibiotics encourage the body’s immune system to overcome the pathogen in natural, active immunity. The final part of the lesson uses a quick quiz competition and a series of exam-style questions to ensure that students can recognise the different antibiotics from descriptions.
Fast & slow twitch muscle fibres (Edexcel A-level Biology A)
GJHeducationGJHeducation

Fast & slow twitch muscle fibres (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the structural and physiological differences between fast and slow twitch muscle fibres. The detailed PowerPoint and accompanying resources have been designed to cover point 7.10 (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and due to the obvious links, this lesson also challenges the students on their knowledge of respiration from earlier in topic 7 and cell structures and biological molecules from topics 1, 2 and 3 The following structural and physiological characteristics are covered over the course of this lesson: Reliance on the aerobic or anaerobic pathways to generate ATP Resistance to fatigue mitochondrial density capillary density myoglobin content (and colour) fibre diameter phosphocreatine content glycogen content A wide variety of tasks are used to cover this content and include knowledge recall and application of knowledge exam-style questions with fully-displayed mark schemes as well as quick quiz competitions to maintain motivation and engagement. This lesson has been specifically planned to tie in with the previous lesson in this topic covering the contraction of skeletal muscles by the sliding filament mechanism
Overall reaction of aerobic respiration (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Overall reaction of aerobic respiration (Edexcel Int. A-level Biology)

(0)
This lesson describes the overall reaction of aerobic respiration, introducing the 4 stages before the finer details are covered in the upcoming lessons. The engaging PowerPoint and accompanying resource have been designed to cover points 7.1 (i) and (ii) of the Edexcel International A-level Biology specification and explains how each step in this many-stepped process is catalysed by a specific intracellular enzyme. The lesson begins with an introduction to glycolysis and students will learn how this first stage of aerobic respiration is also the first stage when oxygen is not present. This stage involves 10 reactions and an opportunity is taken to explain how each of these reactions is catalysed by a different, specific intracellular enzyme. A version of “GUESS WHO” challenges students to use a series of structural clues to whittle the 6 organelles down to just the mitochondrion so that they can learn how the other three stages take place inside this organelle. Moving forwards, the key components of the organelle are identified on a diagram. Students are introduced to the stages of respiration so that they can make a link to the parts of the cell and the mitochondria where each stage occurs. Students will learn that the presence of decarboxylase and dehydrogenase enzymes in the matrix along with coenzymes and oxaloacetate allows the link reaction and the Krebs cycle to run and that these stages produce the waste product of carbon dioxide. Finally, time is taken to introduce the electron transport chain and the enzyme, ATP synthase, so that students can begin to understand how the flow of protons across the inner membrane results in the production of ATP and the the formation of water when oxygen acts as the final electron acceptor.
Roles of the link reaction & Krebs cycle (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Roles of the link reaction & Krebs cycle (Edexcel Int. A-level Biology)

(0)
This detailed lesson describes the roles of the link reaction and the Krebs cycle in the complete oxidation of glucose which occur in the mitochondrial matrix. The PowerPoint and the accompanying resource have been designed to cover point 7.3 of the Edexcel International A-level Biology specification and includes descriptions of the formation of carbon dioxide, ATP, reduced NAD and FAD The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that these two stages occur in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the Link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. The rest of the lesson focuses on the Krebs cycle. In line with the detail of the specification, students will understand how decarboxylation and dehydrogenation reactions result in the regeneration of the oxaloacetate
The need for cellular respiration (OCR A-level Biology)
GJHeducationGJHeducation

The need for cellular respiration (OCR A-level Biology)

(0)
This fully-resourced lesson uses real-life examples in plants and animals to explain why cellular respiration is so important. The PowerPoint and accompanying resources have been designed to cover point 5.2.2 (a) of the OCR A-level Biology A specification but can also be used as a revision tool to challenge the students on their knowledge of active transport, nervous transmission and muscle contraction. As the first lesson in this module, it has been specifically planned to act as an introduction to this cellular reaction and provides important details about glycolysis, the Krebs cycle and oxidative phosphorylation that will support the students to make significant progress when these stages are covered during individual lessons. Students met phosphorylation in module 5.2.1 when considering the light-dependent reactions of photosynthesis and their knowledge of the production of ATP in this plant cell reaction is called on a lot in this lesson to show the similarities. The students are also tested on their recall of the structure and function of ATP, as covered in module 2.1.3, through a spot the errors task. By the end of the lesson, the students will be able to explain why the ATP produced in cellular respiration is needed by root hair cells, by companion cells and in the selective reabsorption of glucose in the proximal convoluted tubule. They will also be able to name and describe the different types of phosphorylation and will know that ATP is produced by substrate-level phosphorylation in glycolysis and the Krebs cycle and by oxidative phosphorylation in the final stage of aerobic respiration with the same name.
Topic 12: Energy and respiration (CIE A-level Biology)
GJHeducationGJHeducation

Topic 12: Energy and respiration (CIE A-level Biology)

9 Resources
Topic 12 tends to be the 1st topic to be taught in the second year of the CIE A-level Biology course and these 9 lessons are filled with a wide variety of differentiated tasks that will immediately engage and motivate the students whilst ensuring that the detailed content is covered. It is critical that students understand how energy in the form of ATP is produced by aerobic and anaerobic respiration and are able to describe the energy-driven reactions like active transport that need this input. For this reason, the lessons contain multiple understanding checks which assess the students on their current knowledge as well as checking on their ability to link to previously-covered topics. The following specification points in topic 12 of the CIE A-level Biology specification are covered in these lessons: The need for energy in living organisms The features of ATP that make this molecule suitable as the energy currency Substrate-level phosphorylation in glycolysis and the Krebs cycle The role of the coenzymes in respiration The involvement of the electron transport chain that’s found in the mitochondria and chloroplast membranes in the production of ATP The four stages of aerobic respiration Glycolysis The link reaction The Krebs cycle Oxidative phosphorylation The structure of the mitochondrion The differences between aerobic and anaerobic respiration The oxygen debt If you would like to sample the quality of these lessons, then download the roles of the coenzymes and the Krebs cycle lessons as these have been uploaded for free
Oxidative phosphorylation (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Oxidative phosphorylation (Edexcel Int. A-level Biology)

(0)
This lesson describes how the electron transport chain and the chemiosmosis are involved in the synthesis of ATP by oxidative phosphorylation. The PowerPoint has been designed to cover point 7.4 of the Edexcel International A-level Biology specification and also looks at the role of the enzyme, ATP synthase. The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 steps and at each point, key facts are discussed and explored in detail to enable a deep understanding to be developed. Students will see how the proton gradient is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP. Understanding checks are included throughout the lesson to enable the students to assess their progress. This lesson has been specifically written to tie in with the other uploaded lessons on glycolysis, the link reaction and Krebs cycle.
Detection of stimuli (Edexcel A-level Biology A)
GJHeducationGJHeducation

Detection of stimuli (Edexcel A-level Biology A)

(0)
This lesson describes how the sensory receptors of the nervous system detect stimuli by transducing different forms of energy into electrical energy. The PowerPoint has been designed to cover the content of the 1st part of specification point 8.5 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and acts as an introduction to the next lesson where the roles of the rod cells in the retina is described. The lesson begins by using a quiz to get the students to recognise the range of stimuli which can be detected by receptors. This leads into a task where the students have to form 4 sentences to detail the stimuli which are detected by certain receptors and the energy conversion that happen as a result. Students will be introduced to the idea of a transducer and learn that receptors always convert to electrical energy which is the generator potential. The remainder of the lesson focuses on the Pacinian corpuscle and how this responds to pressure on the skin, resulting in the opening of the sodium channels and the flow of sodium ions into the neurone to cause depolarisation.
Barriers against pathogens (Edexcel A-level Biology A)
GJHeducationGJHeducation

Barriers against pathogens (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the role of barriers in protecting the body from infection by pathogens when entering the body by the major routes. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 6.11 (i) & (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and describe the following barriers: skin key steps of the blood clotting process mucous membranes stomach acid vaginal and skin flora There are clear links to topics 1, 2 and 3 in each of these barriers, so time is taken to consider these during the descriptions. For example, the presence of keratin in the cytoplasm of the skin cells allows the student knowledge of the properties of this fibrous protein to be checked. Other topics that are revisited during this lesson include blood clotting, protein structure, key terminology and the epithelium that lines the different parts of the airways. All of the exam-style questions and tasks have mark schemes that are embedded in the PowerPoint and a number of them have been differentiated to allow students of differing abilities to access the work.
Behaviour of chromosomes in MITOSIS (CIE A-level Biology)
GJHeducationGJHeducation

Behaviour of chromosomes in MITOSIS (CIE A-level Biology)

(0)
This fully-resourced lesson describes the behaviour of chromosomes during the mitotic cell cycle and explains the importance of this type of nuclear division. The PowerPoint and accompanying resources have been designed to cover points 5.1 (b) & 5.2 (a) of the CIE A-level Biology specification and make direct links to a previous lesson which covered the outline of cell cycle Depending upon the exam board taken at iGCSE, the knowledge and understanding of mitosis will differ considerably between students and there may be a number of misconceptions. This was considered at all points during the planning of the lesson so that existing errors are addressed and key points are emphasised throughout. Their understanding of interphase is challenged at the start of the lesson to ensure that they realise that it is identical pairs of sister chromatids that enter the M phase. The main part of the lesson focuses on prophase, metaphase, anaphase and telophase and describes how the chromosomes behave in these stages. There is a focus on the centrioles and the spindle fibres that they produce which contract to drag one chromatid from each pair in opposite directions to the poles of the cell. The remainder of the lesson is a series of understanding and application questions where students have to identify the various roles of mitosis in living organisms as well as tackling a Maths in a Biology context question. The lesson concludes with a final quiz round of MITOSIS SNAP where they only shout out this word when a match is seen between the name of a phase, an event and a picture.
Transcription factors, the lac operon & DELLA proteins (CIE A-level Biology)
GJHeducationGJHeducation

Transcription factors, the lac operon & DELLA proteins (CIE A-level Biology)

(0)
This lesson describes the function of transcription factors in eukaryotes and uses the lac operon to explain the control of protein production in a prokaryote. The detailed PowerPoint and accompanying resources have been designed to cover points 16.3 (b, c & d) as detailed in the CIE A-level Biology specification and also includes a description of how gibberellin breaks down DELLA protein repressors, allowing transcription to be promoted. This is one of the more difficult concepts in this A-level course and therefore key points are reiterated throughout this lesson to increase the likelihood of student understanding and to support them when trying to make links to actual biological examples in living organisms. There is a clear connection to transcription and translation as covered in topic 6, so the lesson begins by reminding students that in addition to the structural gene in a transcription unit, there is the promoter region where RNA polymerase binds. Students are introduced to the idea of transcription factors and will understand how these molecules can activate or repress transcription by enabling or preventing the binding of the enzyme. At this point, students are challenged on their current understanding with a series of questions about DELLA proteins so they can see how these molecules prevent the binding of RNA polymerase. Their understanding is then tested again with another example with oestrogen and the ER receptor. The final and main section of the lesson focuses on the lac operon and immediately an opportunity is taken to challenge their knowledge of biological molecules with a task where they have to spot the errors in a passage describing the formation and breakdown of this disaccharide. Students will be able to visualise the different structures that are found in this operon and time is taken to go through the individual functions. A step by step guide is used to walk students through the sequence of events that occur when lactose is absent and when it is present before they are challenged to apply their understanding to an exam question.