Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Autonomic Nervous System (OCR A-level Biology)
GJHeducationGJHeducation

Autonomic Nervous System (OCR A-level Biology)

(0)
This detailed lesson looks at the structure and function of the motor neurones that form the autonomic nervous system and is responsible for automatic responses. The engaging PowerPoint and accompanying resource have both been designed to cover the second part of point 5.1.5 (g) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the functional organisation of the motor system into somatic and autonomic systems. Students will discover that this system is further divided into sympathetic and parasympathetic systems to control different aspects of a particular involuntary response. The lesson begins with a focus on the types of effectors that will be connected to the CNS by autonomic motor neurones. Students will learn that effectors which are not under voluntary control such as cardiac muscle, smooth muscle and glands will be innervated by these neurones. Moving forwards, a quick quiz competition is used to introduced ganglia as a structure which connects the two or more neurones involved in the cell signalling between the CNS and the effector. This leads into the discovery of the two divisions and students will begin to recognise the differences between the sympathetic and parasympathetic systems based on function but also structure. The remainder of the lesson looks at the differing effects of these two systems. This lesson has been written to tie in with the lesson on the organisation of the mammalian nervous system which covers the first part of specification point 5.1.5 (g)
The Bohr effect (AQA A-level Biology)
GJHeducationGJHeducation

The Bohr effect (AQA A-level Biology)

(2)
This clear and concise lesson looks at the phenomenon known as the Bohr effect and describes and explains how an increased carbon dioxide concentration effects the dissociation of oxyhaemoglobin. The PowerPoint has been designed to cover the second part of point 3.4.1 of the AQA A-level Biology specification and continually ties in with the previous lesson on the role of haemoglobin. The lesson begins with a terminology check to ensure that the students can use the terms affinity, oxyhaemoglobin and dissociation. In line with this, they are challenged to draw the oxyhaemoglobin dissociation curve and are reminded that this shows how oxygen associates with haemoglobin but how it dissociates at low partial pressures. Moving forwards, a quick quiz is used to introduce Christian Bohr and the students are given some initial details of his described effect. This leads into a series of discussions where the outcome is the understanding that an increased concentration of carbon dioxide decreases the affinity of haemoglobin for oxygen. The students will learn that this reduction in affinity is a result of a decrease in the pH of the cell cytoplasm which alters the tertiary structure of the haemoglobin. Opportunities are taken at this point to challenge students on their prior knowledge of protein structures as well as the bonds in the tertiary structure. The lesson finishes with a series of questions where the understanding and application skills are tested as students have to explain the benefit of the Bohr effect for an exercising individual.
Module 3.1.2: Transport in animals (OCR A-level Biology)
GJHeducationGJHeducation

Module 3.1.2: Transport in animals (OCR A-level Biology)

9 Resources
Each of the 9 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in module 3.1.2 (Transport in animals) of the OCR A-Level Biology A specification. The specification points that are covered within these lessons include: A double, closed circulatory system The structure and function of arteries, arterioles, capillaries, venules and veins The formation of tissue fluid from plasma The internal and external structure of the mammalian heart The cardiac cycle How heart action is initiated and coordinated The use and interpretation of ECGs The role of haemoglobin in transporting oxygen and carbon dioxide The dissociation curve for foetal and adult haemoglobin The Bohr effect The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics If you would like to see the quality of the lessons, download the formation of tissue fluid. heart action and ECGs lessons as these are free
The cardiac cycle and structure of the mammalian heart (Edexcel A-level Biology)
GJHeducationGJHeducation

The cardiac cycle and structure of the mammalian heart (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at the cardiac cycle and relates the structure and operation of the mammalian heart to its function. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 1.4 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification As the structure of the heart was covered at GCSE, the lesson has been planned to build on this prior knowledge whilst adding the key details which will enable students to provide A-level standard answers. The primary focus is the identification of the different structures of the heart but it also challenges their ability to recognise the important relationship to function. For example, time is taken to ensure that students can explain why the atrial walls are thinner than the ventricular walls and why the right ventricle has a thinner wall than the left ventricle. Opportunities are taken throughout the lesson to link this topic to the others found in topic 1 including those which have already been covered like circulatory systems as well as those which are upcoming such as the initiation of heart action. There is also an application question where students have to explain why a hole in the ventricular septum would need to be repaired if it doesn’t naturally close over time. The next part of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by cardiac diastole. Students are challenged to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the rest of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. The final part of the lesson covers the changes in the volume of the ventricle. It is estimated that it will take in excess of 2 hours of allocated A-level teaching time to cover the detail included in this lesson as required by this specification point
Conservation of energy REVISION (Edexcel GCSE Physics Topic 3)
GJHeducationGJHeducation

Conservation of energy REVISION (Edexcel GCSE Physics Topic 3)

(0)
This revision lesson contains a wide range of activities that will challenge the students on their knowledge and understanding of the content detailed in topic 3 (Conservation of energy) of the Pearson Edexcel GCSE Physics specification. These activities include exam style questions which will allow the students to assess their progress against the clearly explained answer. There is also a quiz that runs throughout the course of the lesson and this has been designed to maintain engagement and motivation. The following specification points have been covered in this lesson: Recall and use the equation to calculate the gravitational potential energy Recall and use the equation to calculate the kinetic energy Explain what is meant by the conservation of energy Explain that mechanical transfers become wasteful when energy is dissipated to the surroundings Explain ways of reducing unwanted energy transfers Recall and use the equation to calculate efficiency Describe the main energy sources available for use on Earth and explain their patterns and trends in the use of energy resources
Edexcel GCSE Physics PAPER 2 REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Physics PAPER 2 REVISION LESSONS

7 Resources
All of the lessons in this bundle are fully-resourced and have been designed to challenge the students on their knowledge of the topics which can be assessed in PAPER 2 of the Pearson Edexcel GCSE Physics specification. The content in the following topics is covered by these lessons: Topic 1: Key concepts in Physics Topic 8: Energy - forces doing work Topic 9: Forces and their effects Topic 10: Electricity and circuits Topic 12: Magnetism and the motor effect Topic 13: Electromagnetic induction Topic 14: Particle model Topic 15: Forces and matter The PowerPoints and accompanying resources contain a wide range of activities which include exam-style questions with clear explanations of the answer, differentiated tasks and quiz competitions. There is also a big emphasis on the mathematical element of the specification and students are guided through the use of a range of skills which include the conversion of units and the rearrange of formulae to change the subject.
WJEC GCSE Physics Topic 2.1 REVISION (Distance, speed and acceleration)
GJHeducationGJHeducation

WJEC GCSE Physics Topic 2.1 REVISION (Distance, speed and acceleration)

(0)
This lesson has been written to act as a revision tool for students at the completion of topic 2.1 of the WJEC GCSE Physics specification or in the lead up to mock or terminal exams. The engaging PowerPoint and accompanying resources have been designed to include a wide range of activities to allow the students to assess their understanding and to recognise any areas which need extra attention. This specification is heavy in mathematical content and so a lot of opportunities are presented for a range of skills to be tested and the PowerPoint guides students through the application of these requirements such as rearranging the formula and converting between units. The following specification points have received a particular focus in this lesson: Motion using speed, velocity and acceleration Speed-time graphs Application of the equations to calculate speed and acceleration Using velocity-time graphs to calculate uniform acceleration and distance travelled Knowledge of the terms reaction time, thinking distance, braking distance and stopping distance The factors which affect these distances A number of quick quiz rounds, such as THE WHOLE DISTANCE, are used to maintain engagement and motivation and to challenge the students on their recall of important points.
Cardiac conduction system (AQA A-level PE)
GJHeducationGJHeducation

Cardiac conduction system (AQA A-level PE)

(0)
This fully-resourced lesson describes the roles of the SAN, AVN, bundle of His and the Purkyne fibres in the cardiac conduction system. The engaging PowerPoint and accompanying resources have been designed to cover the fifth specification point in topic 1.1.2 of the AQA A-level PE specification The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from this node in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle which is introduced to provide a deeper understanding and to the structure of the heart and students are challenged on their knowledge of this system. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex before being conducted on the Purkyne fibres so that the contraction of the ventricles can happen from the bottom upwards. The final task of the lesson challenges the students to describe the full sequence of events in the conduction of the electrical impulse through the heart tissue, and there is a particular emphasis on the use of key terminology
Phloem structure (AQA A-level Biology)
GJHeducationGJHeducation

Phloem structure (AQA A-level Biology)

(0)
This engaging lesson describes how the structure of the phloem enables this vascular tissue to transport organic substances in plants. Both the detailed PowerPoint and accompanying resource have been designed to cover the 3rd part of point 3.4.2 (Mass transport in plants) of the AQA A-level Biology specification. Comparative questions between the xylem and phloem are very common so the lesson begins by challenging the students to use their prior knowledge to complete the xylem column of a table with details including the presence of lignin and bordered pits and specific substances which are transported in this tissue. This has been written into the lesson to encourage the students to start to think about how the structure and function of the phloem may compare. 3 quiz rounds have been included in the lesson to maintain motivation and to introduce key terms. The first of these rounds will challenge the students to be the first to recognise descriptions of sucrose and amino acids as they learn that these are the two most common assimilate, which are the substances transported by the phloem. The focus of this lesson is the relationship between structure and function and all descriptions have these two parts highlighted to support the students to recognise the link. Moving forwards, students will be introduced to the sieve tube elements and the companion cells and time is taken to consider why the structure of these cells are so different. Current understanding checks are interspersed throughout the lesson to ensure that any misconceptions can be quickly addressed. The plasmodesmata is described to allow students to understand how assimilates move from the companion cells to the sieve tube elements as this will be particularly important for the next lesson on translocation. The final task of the lesson challenges the students to write a detailed passage about the structure and function of the phloem, incorporating all of the information that they have absorbed throughout the course of the lesson.
Mass transport in plants (AQA A-level Biology)
GJHeducationGJHeducation

Mass transport in plants (AQA A-level Biology)

3 Resources
All 3 of the lessons that are included in this bundle are detailed and fully-resourced with differentiated worksheets to cover the content of topic 3.4.2 (Mass transport in plants) as set out in the AQA A-level Biology specification. Some students do not fully engage with this topic and therefore time has been taken to design each lesson so that it maintains motivation through a wide range of tasks. These tasks include quiz competitions which introduce key terms in a memorable way. The specification points that are covered in these three lessons are: Xylem as the tissue that transports water in the stem and leaves of a plant The cohesion-tension theory of water transport in the xylem Phloem as the tissue that transports organic substances in plants The mass flow hypothesis for the mechanism of translocation in plants If you would like to see the quality of these lessons, download the translocation lesson as this has been shared for free.
Unit 2 E2: Sliding filament theory (BTEC Sport & Exercise Science)
GJHeducationGJHeducation

Unit 2 E2: Sliding filament theory (BTEC Sport & Exercise Science)

(0)
This fully-resourced lesson describes the sliding filament model of muscular contraction and has been designed to cover the 4th part of point E2 in UNIT 2 of the Pearson BTEC Level 3 National Diploma in Sport and Exercise Science specification. The wide range of activities included in the lesson will engage and motivate the students whilst the understanding checks will allow them to assess their progress. The lesson begins by getting them to reveal the prefix myo so that they can recognise that myology is the study of muscles. This leads into the next task, where they have to identify two further terms beginning with myo and are the names of structures involved in the arrangement of skeletal muscle. Key terminology is used throughout the lesson so that students feel comfortable when they encounter this in questions. Students were introduced to the sarcomere and the bands and zones that are found within a myofibril in a previous lesson and they are challenged to discuss how the sarcomere can narrow but the lengths of the myofilaments remain the same. The main task of the lesson involves the formation of a bullet point description of the sliding filament model where one event is the trigger for the next. Time is taken during this section to focus on the involvement of calcium ions and ATP. The final part of the lesson involves students having to apply their knowledge by describing the effect on muscle contraction when a part of a structure is unable to function correctly.
Active & passive immunity & vaccinations (CIE A-level Biology)
GJHeducationGJHeducation

Active & passive immunity & vaccinations (CIE A-level Biology)

(0)
This fully-resourced lesson distinguishes between active and passive, natural and artificial immunity and explains how vaccinations can be used to control disease. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 11.2 (d) of the CIE A-level Biology specification and there is also a description and discussion on the concept of herd immunity. In topic 11.1, students were introduced to the primary and secondary immune responses so the start of this lesson uses an imaginary game of TOP TRUMPS to challenge them on the depth of their understanding. This will act to remind them that a larger concentration of antibodies is produced in a quicker time in the secondary response. The importance of antibodies and the production of memory cells for the development of immunity is emphasised and this will be continually referenced as the lesson progresses. The students will learn that this response of the body to a pathogen that has entered the body through natural processes is natural active immunity. Moving forwards, time is taken to look at vaccinations as an example of artificial active immunity. Another series of questions focusing on the MMR vaccine will challenge the students to explain how the deliberate exposure to antigenic material activates the immune response and leads to the retention of memory cells. A quick quiz competition is used to introduce the variety of forms that the antigenic material can take along with examples of diseases that are vaccinated against using these methods. The eradication of smallpox is used to describe the concept of herd immunity and the students are given time to consider the scientific questions and concerns that arise when the use of this pathway is a possible option for a government. The remainder of the lesson looks at the different forms of passive immunity and describes the drawbacks in terms of the need for a full response if a pathogen is re-encountered
Genetic crosses & pedigree diagrams (Edexcel A-level Biology B)
GJHeducationGJHeducation

Genetic crosses & pedigree diagrams (Edexcel A-level Biology B)

(1)
This fully-resourced lesson guides students through the construction of genetic crosses and pedigree diagrams for the inheritance of a single gene. The clear PowerPoint and accompanying resources have been designed to cover point 8.2 (ii) of the Edexcel A-level Biology B specification and includes the inheritance of multiple allele characteristics as well as those that demonstrate codominance. In order to minimise the likelihood of errors and misconceptions, step by step guides have been included throughout the lesson to support the students with the following: Writing parent genotypes Working out the different gametes that are made following meiosis Interpreting Punnett crosses to work out phenotypic ratios Students can often find pedigree trees the most difficult to interpret and to explain so exemplar answers are used as well as differentiated worksheets provided to support those students who need extra assistance.
Active transport, endocytosis & exocytosis (OCR A-level Biology)
GJHeducationGJHeducation

Active transport, endocytosis & exocytosis (OCR A-level Biology)

(0)
This fully-resourced lesson describes the movement of molecules by active transport, endocytosis and exocytosis, which are all active process that require ATP. The PowerPoint and accompanying worksheets have been designed to cover the second part of point 2.1.5 (d) [i] of the OCR A-level Biology A specification. The first part of this specification point, concerning simple and facilitated diffusion, was covered in the previous lesson. The start of the lesson challenges the students to use their prior knowledge of biological molecules to come up with the abbreviation ATP. Students were introduced to this molecule in module 2.1.3, so a series of prior knowledge questions are used to check on their recall of the structure and properties of ATP. Students are also reminded that the hydrolysis of ATP can be coupled to energy-requiring reactions within the cell and the rest of the lesson focuses on the use of this energy input for active transport, endocytosis and exocytosis. Students are challenged to answer a series of questions which compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the energy source of ATP to move large substances in or out of the cell. The lesson concludes with a link to a future topic as the students are shown how exocytosis is involved in a synapse.
Genetic biodiversity (OCR A-level Biology)
GJHeducationGJHeducation

Genetic biodiversity (OCR A-level Biology)

(0)
This fully-resourced lesson describes genetic biodiversity as the number of genes in a population and considers how it can be assessed. The engaging PowerPoint and accompanying differentiated resources have been primarily designed to cover point 4.2.1 (e) of the OCR A-level Biology A specification but also introduces inheritance and codominance so that students are prepared for these genetic topics when they are covered in module 6.1.2 In order to understand that 2 or more alleles can be found at a gene loci, students need to be confident with genetic terminology. Therefore the start of the lesson focuses on key terms including gene, locus, allele, recessive, genotype and phenotype. A number of these will have been met at GCSE, as well as during the earlier lessons in module 2.1.3 when considering meiosis, so a quick quiz competition is used to check on their recall of the meanings of these terms. The CFTR gene is then used as an example to demonstrate how 2 alleles results in 2 different phenotypes and therefore genetic diversity. Moving forwards, students will discover that more than 2 alleles can be found at a locus and they are challenged to work out genotypes and phenotypes for a loci with 3 alleles (shell colour in snails) and 4 alleles (coat colour in rabbits). Two calculations are provided to the students that can calculate the % of loci with more than one allele and the proportion of polymorphic gene loci. At this point, the students are introduced to codominance and again they are challenged to apply their understanding to a new situation by working out the number of phenotypes in the inheritance of blood groups. The lesson concludes with a brief consideration of the HLA gene loci, which is the most polymorphic loci in the human genome, and students are challenged to consider how this sheer number of alleles can affect the chances of tissue matches in organ transplantation
The mechanism of breathing (AQA A-level Biology)
GJHeducationGJHeducation

The mechanism of breathing (AQA A-level Biology)

(0)
This lesson describes the mechanism of breathing, including the roles of the ribcage, intercostal muscles and the diaphragm. The content of the engaging PowerPoint has been designed to cover the details of the fifth part of specification point 3.2 of the AQA A-level Biology specification and introduces the antagonistic interaction of the external and internal intercostal muscles. The lesson begins with a focus on the diaphragm and students will discover that this sheet of muscle is found on the floor of the thoracic cavity. Whilst planning the lesson, it was deemed important to introduce this region of the body at an early stage because the best descriptions will regularly reference the changes seen in this cavity. As the mechanism of inhalation is a cascade of events, the details of this process are covered in a step by step format using bullet points. At each step, time is taken to discuss the key details which includes an introduction to Boyle’s law that reveals the inverse relationship between volume and pressure. It is crucial that students are able to describe how the actions of the diaphragm, external intercostal muscles and ribcage result in an increased volume of the thoracic cavity and a subsequent decrease in the pressure, which is below the pressure outside of the body. At this point, their recall of the structures of the mammalian gas exchange system is tested, to ensure that they can describe the pathway the air takes on moving into the lungs. The remainder of the lesson involves a task which challenges the students to describe exhalation and then the accessory muscles involved in forced ventilation are also considered.
Topic 3: Cell structure, Reproduction & Development (Edexcel International A-level Biology)
GJHeducationGJHeducation

Topic 3: Cell structure, Reproduction & Development (Edexcel International A-level Biology)

12 Resources
The locus and linkage, meiosis, differential gene expression and protein transport within cells lessons have been uploaded for free and by downloading these, you will be able to observe the detail of planning that has gone into all of the lessons that are included in this bundle. This intricate planning ensures that the students are engaged and motivated whilst the detailed content of topic 3 (Cell structure, Reproduction and Development) of the Edexcel International A-level Biology specification is covered. The 12 lesson PowerPoints and accompanying resources contain a wide range of activities which cover the following topic 3 specification points: All living organisms are made of cells Cells of multicellular organisms are organised into tissues, organs and organ systems The ultrastructure of eukaryotic cells The function of the organelles in eukaryotic animal cells The role of the RER and Golgi apparatus in protein transport within cells The ultrastructure of prokaryotic cells Magnification and resolution in light and electron microscopes The gene locus is the location of a gene on a chromosome The linkage of genes on a chromosome The role of meiosis in ensuring genetic variation Understand how the mammalian gametes are specialised for their functions The role of mitosis and the cell cycle in growth and asexual reproduction The meaning of the terms stem cell, pluripotent, totipotent, morula and blastocyst The decisions that have to be made about the use of stem cells in medical therapies Cells become specialised through differential gene expression One gene can give rise to more than one protein through post-transcriptional changes to mRNA Phenotype is the interaction between genotype and the environment Some phenotypes are affected by multiple alleles or by polygenic inheritance Due to the detail included in all of these lessons, it is estimated that it will take in excess of 6 weeks of allocated A-level teaching time to complete the teaching of the bundle
Edexcel GCSE Combined Science Topic C2 REVISION (States of matter and mixtures)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic C2 REVISION (States of matter and mixtures)

(0)
This REVISION resource has been written with the aim of motivating the students whilst they are challenged on their knowledge of the content in Chemistry TOPIC 2 (States of matter and mixtures) of the Edexcel GCSE Combined Science specification. The resource contains an engaging and detailed PowerPoint (65 slides) and accompanying worksheets, most of which are differentiated to allow a range of abilities to access the work. The wide range of activities, which include exam questions and quiz competitions, have been designed to cover as much of topic 2 as possible but the following sub-topics have been given a particular focus: Pure substances in Science Using melting and boiling points to distinguish between pure and impure Separating mixtures using simple and fractional distillation Determining a state of matter using data Physical changes Crystallisation The mobile and stationary phases of paper chromatography Calculating the retention factor The treatment of water to make potable water This resource is suitable for use at the end of topic 2, in the lead up to mocks or in the preparation for the final GCSE exams.
Control of blood glucose concentration HT (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

Control of blood glucose concentration HT (AQA GCSE Biology & Combined Science)

(0)
This fully-resourced lesson has been designed to cover both the foundation and higher tier content of specification point 5.3.2 (Control of blood glucose concentration) as found in topic 5 of the AQA GCSE Biology & Combined Science specifications. This resource contains an engaging PowerPoint (37 slides) and accompanying worksheets, some of which have been differentiated so that students of different abilities can access the work. The resource is filled with a wide range of activities, each of which has been designed to engage and motivate the students whilst ensuring that the key Biological content is covered in detail. Understanding checks are included throughout so that the students can assess their grasp of the content. In addition, previous knowledge checks make links to content from earlier topics such as the endocrine system and literacy checks ensure that the students can spell and recognise the key words, which is extremely important considering how many terms begin with the letter g in this homeostatic control system. The following content is covered in this lesson: The receptors, coordination centre and effectors in the control of blood glucose concentration The release of insulin when high blood glucose levels are detected The conversion of glucose to glycogen for storage in liver and muscle cells The causes and treatments of diabetes type I and II The release of glucagon when low blood glucose levels are detected The interaction of insulin and glucagon in a negative feedback cycle As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology or Combined Science courses, but it can be used with A-level students who need to go back over the key points before looking at the homeostatic control in more detail
AQA GCSE Chemistry PAPER 1 REVISION (Topics C1-C5)
GJHeducationGJHeducation

AQA GCSE Chemistry PAPER 1 REVISION (Topics C1-C5)

(0)
This REVISION resource has been designed to motivate and engage students whilst they are challenged on their knowledge of the content in topics C1-C5 of the AQA GCSE Chemistry specification which can be assessed on PAPER 1. This is fully-resourced and contains a detailed PowerPoint (208 slides) and accompanying worksheets, some of which have been differentiated. The resource was written with the aim of covering as many of the sub-topics in C1-C5 as possible, but the following ones have been given a particular focus: The chemical properties of the Group 1, 7 and 0 elements The structure of atoms and ions The properties of ionic compounds Drawing dot and cross diagrams to represent ionic compounds Extracting metals using carbon REDOX reactions Electrolysis of molten salts and solutions Neutralisation reactions Writing balanced chemical symbol equations Simple and giant covalent structures Diamond and graphite Calculating the relative formula mass Moles and Avogadro’s constant Calculating the mass in reactions Molar volume (Gas calculations) Concentration of solutions The organisation of the Periodic Table Due to the extensiveness of this resource, it is likely to be used over the course of a number of lessons with a particular class and this allows the teacher to focus in on any sub-topics which are identified as needing more time.