Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Fick's Law & gas exchange surfaces (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Fick's Law & gas exchange surfaces (Edexcel Int. A-level Biology)

(0)
This lesson describes how Fick’s law of diffusion is governed by the three main properties of gas exchange surfaces in living organisms. The PowerPoint and accompanying worksheets have been designed to cover points 2.1 (i & ii) of the Edexcel International A-level Biology specification and there is a particular focus on the relationship between the size of an organism or structure and its surface to volume ratio. Adolf Fick is briefly introduced at the start of the lesson and the students will learn that his law of diffusion governs the diffusion of a gas across a membrane and is dependent on three properties. The students are likely to know that surface area is one of these properties but although they may have been introduced to the surface area to volume ratio at iGCSE, their understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of this ratio in order to increase the relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson to walk them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of an organism and this leads into the next part of the lesson, where the adaptations of a human to increase the ratio at the gas exchange surface is covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. The remainder of the lesson introduces concentration difference and thickness of membrane as the other two properties in Fick’s law of diffusion and students are reminded that the maintenance of a steep concentration gradient and a reduction in the diffusion distance are critical for this transport mechanism. This lesson has been specifically planned to prepare students for the next lesson which describes how the structure of the mammalian lung is adapted for rapid gas exchange (specification point 2.1 [iii])
Biological molecules (Edexcel SNAB)
GJHeducationGJHeducation

Biological molecules (Edexcel SNAB)

10 Resources
This lesson bundle contains 10 lessons which have been designed to cover the Pearson Edexcel A-level Biology A (Salters Nuffield) specification points which focus on the structure and function of the biological molecules, including water, carbohydrates, lipids and proteins. The lesson PowerPoints are highly detailed, and along with their accompanying worksheets, they have been planned at length to contain a wide range of engaging tasks which cover the following A-level Biology content that’s found in topics 1, 2 and 4 of the course: 1.2: Understand the importance of water as a solvent in transport, including its dipole nature 1.12 (i): Know the difference between monosaccharides, disaccharides and polysaccharides, including glycogen and starch (amylose and amylopectin) 1.12 (ii): Be able to relate the structures of monosaccharides, disaccharides and polysaccharides to their roles in providing and storing energy 1.13: Know how monosaccharides join to form disaccharides (sucrose, lactose and maltose) and polysaccharides (glycogen and amylose) through condensation reactions forming glycosidic bonds, and how these can be split through hydrolysis reactions 1.14 (i): Know how a triglyceride is synthesised by the formation of ester bonds during condensation reactions between glycerol and three fatty acids. 1.14 (ii): Know the differences between saturated and unsaturated lipids 2.9 (i): Know the basic structure of an amino acid 2.9 (ii): Understand the formation of polypeptides and proteins (amino acid monomers linked by peptide bonds in condensation reactions) 2.9 (iii): Understand the significance of a protein’s primary structure in determining its three-dimensional structure and properties (globular and fibrous proteins and the types of bonds involved in its three-dimensional structure) 2.10 (iv): Know the molecular structure of a globular protein and a fibrous protein and understand how their structures relate to their functions (including haemoglobin and collagen) 4.9: Understand the structure and function of the polysaccharides starch and cellulose, including the role of hydrogen bonds between β-glucose molecules in the formation of cellulose microfibrils
International & local conservation agreements (OCR A-level Biology A)
GJHeducationGJHeducation

International & local conservation agreements (OCR A-level Biology A)

(0)
This lesson describes the international and local conservation agreements that are made to protect species and habitats. The detailed PowerPoint and accompanying worksheets have been designed to cover point 4.2.1 (i) of the OCR A-level Biology A specification and includes details of CITES, CBD and CSS. Many hours of research have gone into the planning of this lesson to ensure that a range of interesting biological examples are included, with the aim of fully engaging the students in the material to increase its relevance. Beginning with the Convention on International Trade in Endangered Species of Wild Fauna and Flora, the students will learn that this was first agreed in 1973 and that 35000 species are currently found in appendix I, II or III. Time is taken to go through the meaning of each appendix and then the following animal and plant species are used to explain the finer details of the agreement: Tree pangolin, eastern black rhino for CITES appendix I Darwin’s orchid for CITES appendix II Four-horned antelope for CITES appendix III Exam-style questions are used to check on their understanding of the current topic as well as to challenge their knowledge of previously-covered topics such as the functions of keratin, when considering the structure of the rhino horn. Each of these questions has its own markscheme which is embedded in the PowerPoint and this allows the students to constantly assess their progress. Moving forwards, the Rio Convention on Biological Diversity is introduced and students will understand that this is a key document regarding sustainable development. The final part of the lesson considers local conservation agreements, focusing on the Countryside Stewardship Scheme and its replacement, the Environmental Stewardship Scheme. Students are told that farmers, woodland owners, foresters and land managers can apply for funding for a range of options including hedgerow management, low input grassland, buffer strips, management plans and soil protection options. The importance of the hedgerows for multiple species is discussed, and again a real-life example is used with bats to increase the likelihood of retention. The last task challenges them to use their overall knowledge of module 4.2.1 (biodiversity) to explain why buffer strips consisting of multiple types of vegetation are used and to explain why these could help when a farmer is using continuous monoculture.
Spearman rank correlation coefficient (Edexcel A-level Biology B)
GJHeducationGJHeducation

Spearman rank correlation coefficient (Edexcel A-level Biology B)

(0)
This lesson describes how to analyse data using the Spearman rank correlation coefficient. The PowerPoint and accompanying exam-style question are part of the second lesson in a series of 2 lessons which have been designed to cover point 10.1 (vi) of the Edexcel A-level Biology B specification. The first lesson in this series described how to analyse data using the standard deviation and the t-test As with the previous lesson, a step by step guide is used to walk the students through the use of the formula to generate the rank coefficient and to determine whether there is a positive correlation, no correlation or a negative correlation. The students are also reminded of the null hypothesis and will be shown how to accept or reject this hypothesis and to determine significance. The students will work through an example with the class and then are given the opportunity to apply their newly-acquired knowledge to an exam-style question. The mark scheme is displayed on the PowerPoint so they can assess their understanding
OCR GCSE Chemistry C1 - C3 REVISION
GJHeducationGJHeducation

OCR GCSE Chemistry C1 - C3 REVISION

(0)
This highly detailed and engaging lesson presentation (143 slides) acts as an excellent revision tool for students who are approaching their 1st OCR Gateway A GCSE Chemistry paper which includes the topics found in modules C1 - C3. This lesson uses a range of exam questions with explained answers, quick tasks and quiz competitions (such as UNLOCK the SAFE) to encourage the students to assess their understanding of the specification content and ultimately recognise any areas which will need further attention before the exam. The topics that are covered in this revision lesson include: Ionic, covalent and metallic bonding Atomic structure Using the Periodic Table Mole calculations Balancing symbol equations Conservation of mass Pure and impure substances Chromatography Calculating energy changes in reactions Reaction profiles Endothermic and exothermic reactions The detail in this presentation means that it is likely to be spread over a number of lessons and small chunks can be used at a time when revision needs to be specific.
AQA GCSE Chemistry TOPIC 5 REVISION (Energy changes)
GJHeducationGJHeducation

AQA GCSE Chemistry TOPIC 5 REVISION (Energy changes)

(0)
A fully resourced lesson presentation (53 slides) and associated worksheet that uses a combination of exam questions, understanding checks, quick tasks and a quiz competition to help the students to assess their understanding of the topics found within TOPIC 5 (Energy changes) of the AQA GCSE Chemistry specification (specification point C4.5). The lesson includes useful hints and tips to encourage success in assessments. For example, students are shown how to use the energy change in a chemical reaction to work out if it is an endothermic or exothermic reaction. The topics that are tested within the lesson include: Endothermic and exothermic reactions Reaction profiles Calculating energy changes in reactions Fuel cells Students will be engaged through the numerous activities including a summary round called “E NUMBERS” which requires them to use all of their knowledge to work out the type of reactions that are shown.
Filtration and crystallisation
GJHeducationGJHeducation

Filtration and crystallisation

(0)
This is an engaging and practical-based lesson which uses the background idea of a man needing to make crystals for a date to engage students into understanding how the separation methods of filtration and crystallisation work. Like all of the lessons in the separation topic, a lot of the key terms sound similar and are often wrongly used by students. For this reason, time is given in the lesson to ensure that students can use them correctly, especially when describing filtration. In line with the background of the lesson, students are challenged to come up with the apparatus and substances needed to make the crystals. A method is provided so should the teacher choose, students will be able to carry out the practical and produce the copper sulphate crystals. Progress checks are written into the lesson at regular intervals, which question the students on this lesson topic and that of related ones and the final task of the lesson involves an exam question where students have to describe the method and equipment needed to make crystals. This lesson has primarily been written for GCSE students (14 - 16 years in the UK) but is appropriate for younger students who are studying the separation topic
The pH scale
GJHeducationGJHeducation

The pH scale

(0)
A fast-paced lesson that looks at the key details of the different substances which are found along the pH scale. This lesson has been designed for GCSE students and to build on the foundation knowledge that they picked up at KS3. Along with the obvious Scientific knowledge associated with the lesson, both numeracy and literacy skills are challenged during the lesson. Time is taken to ensure that the meaning of pH is understood and new terms such as base are introduced, so that these are recognised when written in assessment questions. Students will recall the scale numbers associated with acidic, neutral and alkaline solutions and their knowledge will be extended through the introduction of hydrogen and hydroxide ions. A method for taking a pH reading using a pH probe is included which can be used should the teacher chose that it is required. Progress checks are written into the lesson at regular intervals so that students can constantly assess their understanding.
Topic C3: Quantitative Chemistry (AQA Trilogy GCSE Combined Science)
GJHeducationGJHeducation

Topic C3: Quantitative Chemistry (AQA Trilogy GCSE Combined Science)

5 Resources
This bundle of 5 lessons covers the majority of the content in Topic C3 (Quantitative Chemistry) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include: Relative formula mass The mole Conservation of mass The mole and equations Limiting reactants Concentration of solutions All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B5: Health, disease and development of medicines (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic B5: Health, disease and development of medicines (Edexcel GCSE Combined Science)

7 Resources
This bundle of 7 lessons covers a lot of the content in Topic B5 (Health, disease and development of medicines) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: Health The difference between communicable and non-communicable diseases Pathogens Common infections The spread of diseases and the prevention The spread of STIs The physical and chemical defences of the human body The use of antibiotics Developing new medicines Non-communicable diseases Treating cardiovascular disease All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic C4.1: Predicting chemical reactions (OCR Gateway A GCSE Chemistry)
GJHeducationGJHeducation

Topic C4.1: Predicting chemical reactions (OCR Gateway A GCSE Chemistry)

5 Resources
This bundle of 5 lessons covers all of the content in the sub-topic C4.1 (Predicting chemical reactions) of the OCR Gateway A GCSE Chemistry specification. The topics covered within these lessons include: The alkali metals The halogens Displacement reactions of the halogens The noble gases The transition metals Reactivity of elements All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
The Menstrual cycle
GJHeducationGJHeducation

The Menstrual cycle

(0)
This is an engaging and discussion filled lesson which looks at the menstrual cycle and specifically focuses on the interaction of the four hormones in the cycle. This lesson has been designed for GCSE students (ages 14 - 16 in the UK) but is suitable for older students who want a recap on this topic before going into more depth. In order to understand the cycle, it is critical that students know the roles that each of the hormones perform and also can describe how one hormone affects another. The main task of the lesson goes through the steps in the cycle, but challenges the students to use their prior knowledge of the endocrine system to add in the name of the correct hormone. At appropriate points of the lesson, time is taken to relate this topic to others in Biology, such as the use of oestrogen in the contraceptive pill and also hCG as the hormone which is detected by pregnancy tests. Students will know key landmarks in the 28 day cycle and be able to relate this back to the hormones. There are progress checks throughout the lesson but the final part of the lesson involves three understanding checks where students are challenged to apply their knowledge.
IVF
GJHeducationGJHeducation

IVF

(1)
This is a fully-resourced lesson which looks at how IVF is used a treatment for infertility and considers the arguments for and against this process. The lesson includes an engaging, informative and discussion provoking lesson presentation and a pair of differentiated worksheets which challenge the mathematical skills of the students when looking at the % chance of multiple births from IVF. The lesson begins by getting the students to recognise the phrase “test tube baby” and then to link this to IVF. Extra pieces of interesting information are given throughout the lesson, such as the introduction of Louise Brown at this point. A step by step guide is used to go through the key steps in the process. Questions are continually posed to the students which get them to think and attempt to verbalise their answers such as when they are questioned whether men are needed for this process. There is a focus on key terminology throughout, such as haploid and zygote and genetic screening. Students will learn that multiple births are much more common in IVF births than from natural conception and then they will be asked to manipulate data in a mathematical task with some figures from a maternity ward. As these questions are quite difficult, this worksheet has been differentiated so that all students can access the learning. Although this has been written for GCSE students, it is suitable for use with older students.
Topic C7: Rates of reaction and energy changes (Edexcel GCSE Combined Science & Chemistry)
GJHeducationGJHeducation

Topic C7: Rates of reaction and energy changes (Edexcel GCSE Combined Science & Chemistry)

7 Resources
This bundle of 7 lessons covers a lot of the content in Topic C7(Rates of reaction and enrgy changes) of the Edexcel GCSE Combined Science & GCSE Chemistry specifications. The topics covered within these lessons include: Determining the rate of reaction The collision theory The effect of temperature and concentration on the rate of reaction Catalysts and the rate of reaction Endothermic and exothermic reactions Calculating energy changes in reactions All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B3: Organism-level systems (OCR Gateway A GCSE Biology)
GJHeducationGJHeducation

Topic B3: Organism-level systems (OCR Gateway A GCSE Biology)

13 Resources
This bundle of 15 lessons covers the majority of the content in Topic B3 (Organism level systems) of the OCR Gateway A GCSE Biology specification. The topics covered within these lessons include: The nervous system The eye Hormones and the endocrine system Adrenaline Negative feedback loops Thyroid gland and thyroxine The menstrual cycle Contraception Using hormones to treat infertility Plant hormones Homeostasis Controlling body temperature Controlling blood glucose Diabetes Inside the kidney All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Diabetes mellitus Type I and II
GJHeducationGJHeducation

Diabetes mellitus Type I and II

(0)
This is a fast-paced lesson which uses a range of tasks and quick competitions to compare the diagnosis, symptoms and treatment of Diabetes mellitus Type I and II. Students are continually challenged throughout the lesson to build and deepen their knowledge of these conditions and consider how they can be controlled through hormone injections or lifestyle changes. Clear links are made to related topics such as auto-immune diseases and the endocrine system and progress checks have been written into the lesson to allow students to assess their understanding of all of these topics. The final part of the lesson involves the students writing a letter to an individual who has type II, explaining how this diagnosis was done, giving details of the condition and recommending lifestyle changes. This task is differentiated so that students who are finding it difficult can still access the learning. This lesson has been written for A-level students. If you are looking for a lesson for younger students on this topic, then my other upload “Diabetes Type I and II” will be more suitable.
Topic P3: Electricity and Magnetism (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P3: Electricity and Magnetism (OCR Gateway A GCSE Combined Science)

9 Resources
This bundle of 9 lessons covers a lot of the key content in Topic P3 (Electricity and magnetism) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: Current and charge Potential difference Electrical circuit symbols Resistance and Resistors Circuit devices Series and parallel circuits Circuit calculations Energy and power in circuits All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P6.2: Powering Earth (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P6.2: Powering Earth (OCR Gateway A GCSE Combined Science)

3 Resources
This bundle of 3 lessons covers most of the content in sub-topic P6.2(Powering Earth) of the OCR Gateway A GCSE Combined Science specification. The topics or specification points covered within these lessons include: The main energy sources available for use on Earth Patterns and trends in the use of energy resources The use of transformers to increase or decrease potential difference The National grid The differences in function between the live, neutral and earth wires All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P4: Properties of waves, including light and sound (Cambridge iGCSE Science Double Award)
GJHeducationGJHeducation

Topic P4: Properties of waves, including light and sound (Cambridge iGCSE Science Double Award)

7 Resources
This bundle of 8 lessons covers the majority of the content in Topic P4 (Properties of waves, including light and sound) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specification points covered within these lessons include: The meaning of speed, frequency, wavelength and amplitude Distinguishing between transverse and longitudinal waves Understanding how waves can undergo reflection and refraction Reflection of light Refraction of light Describe total internal reflection The meaning of the critical angle Thin converging lens The main features of the EM spectrum The properties and uses of the EM waves The properties and uses of sound waves All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
Reaction time
GJHeducationGJHeducation

Reaction time

(0)
This is a detailed lesson which looks at the topic of reaction times and guides students through calculating a reaction time using the results of the well known ruler-drop test. In addition, students will see how reaction times can be applied in athletics but also in the calculation of the thinking distance for drivers. The lesson includes an engaging lesson presentation (32 slides) and a student task worksheet. The lesson begins by introducing the key term, reaction time, and teaching students that the average reaction time is 0.2 seconds. Moving forwards, a step by step guide is used to show the students how to take the value for distance travelled by a ruler in the drop test and use the equations of motion and change in velocity equation to calculate the reaction time. There is a large mathematical element to the lesson which challenges the students ability to rearrange formula, convert between units and leave answers to a specified number of significant figures. The answers and methods in obtaining these are always displayed at the end of each task so that the students can assess their understanding and recognise where errors were made if any were. Students will have to follow the provided method to obtain 5 results in the ruler drop test and ultimately find out their own reaction time. The remainder of the lesson looks at how the thinking distance at different speeds can be calculated. This lesson has been written for GCSE students due to the high maths content but could be used with younger students of high ability.