Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The role of haemoglobin (CIE International A-level Biology)
GJHeducationGJHeducation

The role of haemoglobin (CIE International A-level Biology)

(1)
This engaging lesson looks at the role of haemoglobin in carrying oxygen and carbon dioxide. The PowerPoint has been designed to cover point 8.1 (f) of the CIE International A-level Biology specification and includes references to the role of carbonic anhydrase and the formation of haemoglobinic acid and carbaminohaemoglobin. The lesson begins with a version of the quiz show Pointless to introduce haemotology as the study of the blood conditions. Students are told that haemoglobin has a quaternary structure and are challenged to use their prior knowledge of biological molecules to determine what this means for the protein. They will learn that each of the 4 polypeptide chains contains a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. The remainder of the lesson looks at the different ways that carbon dioxide is transported around the body that involve haemoglobin. Time is taken to look at the dissociation of carbonic acid into hydrogen ions so that students can understand how this will affect the affinity of haemoglobin for oxygen in an upcoming lesson on the Bohr effect.
Stabilising, disruptive and directional selection (CIE International A-level Biology)
GJHeducationGJHeducation

Stabilising, disruptive and directional selection (CIE International A-level Biology)

(0)
This engaging and fully-resourced lesson looks at the effects of stabilising, directional and disruptive selection as the three main types of selection. The PowerPoint and accompanying resources have been designed to cover point 17.2 (b) of the CIE International A-level Biology specification which states that students should be able to identify each type of selection by its effect on different phenotypes. The lesson begins with an introduction to the mark, release, recapture method to calculate numbers of rabbits with different coloured fur in a particular habitat. This method is covered later in topic 18 so this section of the lesson is designed purely to generate changes in numbers of the organisms. Sketch graphs are then constructed to show the changes in the population size in this example. A quick quiz competition is used to engage the students whilst introducing the names of the three main types of selection before a class discussion point encourages the students to recognise which specific type of selection is represented by the rabbits. Key terminology including intermediate and extreme phenotypes and selection pressure are used to emphasise their importance during explanations. A change in the environment of the habitat and a change in the numbers of the rabbits introduces directional selection before students will be given time to discuss and to predict the shape of the sketch graph for disruptive selection. Students are challenged to apply their knowledge in the final task of the lesson by choosing the correct type of selection when presented with details of a population and answer related questions.
The mammalian heart (OCR A-level Biology)
GJHeducationGJHeducation

The mammalian heart (OCR A-level Biology)

(0)
This fully-resourced lesson looks at the internal and external structure of the mammalian heart and uses the human heart to represent this anatomy. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 3.1.2 (e) (i) of the OCR A-level Biology A specification As this topic was covered at GCSE, the lesson has been planned to build on this prior knowledge whilst adding the key details which will enable students to provide A-level standard answers. The primary focus is the identification of the different structures of the heart but it also challenges their ability to recognise the important relationship to function. For example, time is taken to ensure that students can explain why the atrial walls are thinner than the ventricular walls and why the right ventricle has a thinner wall than the left ventricle. Opportunities are taken throughout the lesson to link this topic to the others found in topic 3.1.2 including those which have already been covered like circulatory systems as well as those which are upcoming such as the initiation of heart action. There is also an application question where students have to explain why a hole in the ventricular septum would need to be repaired if it doesn’t naturally close over time.
Cardiac cycle (OCR A-level Biology)
GJHeducationGJHeducation

Cardiac cycle (OCR A-level Biology)

(0)
This detailed and fully-resourced lesson describes and explains the pressure changes in the heart and arteries and the role of the valves movements in the cardiac cycle. The PowerPoint and accompanying resources have been designed to cover point 3.1.2 (f) of the OCR A-level Biology A specification and also covers the use of the equation stroke volume x heart rate to calculate cardiac output The start of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by diastole. Students are challenged on their prior knowledge of the structure of the heart as they have to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the next part of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. Moving forwards, the students are introduced to the stroke volume and meet normative values for this and for resting heart rate. This will lead into the calculation for cardiac output and a series of questions are used to test their ability to apply this equation as well as to calculate the percentage change which is a commonly assessed mathematical skill. This lesson has been written to tie in with the other uploaded lessons on the topics detailed in module 3.1.2 (Transport in animals)
Transport in mammals REVISION (Topic 8 CIE International A-level Biology)
GJHeducationGJHeducation

Transport in mammals REVISION (Topic 8 CIE International A-level Biology)

(0)
This fully-resourced REVISION lesson has been written to challenge the students on their knowledge of the content of topic 8 (Transport in mammals) of the CIE International A-level Biology specification. The engaging PowerPoint and accompanying resources will motivate the students whilst they assess their understanding of the content and identify any areas which may require further attention. The wide range of activities have been written to cover as much of the topic as possible but the following specification points have been given particular focus: The significance of the oxygen dissociation curves at different concentrations of carbon dioxide (The Bohr effect) The role of haemoglobin in carrying oxygen The role of haemoglobin in carrying carbon dioxide Draw the structures of red blood cells, neutrophils, monocytes and lymphocytes The relationship between the structure and function of a capillary The internal structure of the heart and its associated blood vessels Explain how heart action is initiated and controlled The pressure changes of the cardiac cycle The relationship between the structure and function of arteries and veins The double, closed circulatory system of a mammal Quiz rounds such as “Does this FLOW correctly” and “YOU DO THE MATH” are used to test the students on the finer details of their knowledge of the blood vessels and numerical facts
Topic 3.4.1: Mass transport in animals (AQA A-level Biology)
GJHeducationGJHeducation

Topic 3.4.1: Mass transport in animals (AQA A-level Biology)

7 Resources
Each of the 7 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 3.4.1 (Mass transport in animals) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include: Haemoglobin and the role in the transport of oxygen The effects of carbon dioxide concentration on the dissociation of oxyhaemoglobin The general pattern of blood circulation in a mammal The gross structure of the human heart The calculation of cardiac output Pressure and volume changes and valve movements during the cardiac cycle The structure and function of arteries, arterioles and veins The formation of tissue fluid The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics If you would like to see the quality of the lessons, download the blood vessels and the formation of tissue fluid lessons as these are free
Magnetism and Electromagnetism REVISION (Edexcel IGCSE Physics TOPIC 6)
GJHeducationGJHeducation

Magnetism and Electromagnetism REVISION (Edexcel IGCSE Physics TOPIC 6)

(0)
This fully-resourced REVISION lesson has been written to challenge the students on their knowledge of the content of topic 6 (Magnetism and electromagnetism) of the Pearson Edexcel IGCSE Physics specification. The engaging PowerPoint and accompanying resources will motivate the students whilst they assess their understanding of the content and identify any areas which may require further attention. The wide range of activities have been written to cover as much of the topic as possible but the following specification points have been given particular focus: Magnets attract and repel other magnets and attract magnetic materials Magnetism is induced in some materials when they are placed in a magnetic field The construction of an electromagnet Use of the left-hand rule to predict the direction of the resulting force in a motor How the motor effect is applied in a loudspeaker The structure and function of a transformer Know and use the relationship between input and output voltages and the turns ratio Know and use the relationship between input and output power for 100% efficient transformer Explain the use of a step-up transformer in the transmission of electrical energy Quiz rounds such as “THE BIG REVEAL” and “WHAT EXACTLY AM I” are used to test the students on their knowledge of key terms and structures and all of the tasks are differentiated to allow students of differing abilities to access the work
Particle model of matter REVISION (AQA GCSE Physics Topic 3)
GJHeducationGJHeducation

Particle model of matter REVISION (AQA GCSE Physics Topic 3)

(0)
This fully-resourced revision lesson challenges the students on their knowledge of the content detailed in topic 3 (Particle model of matter) of the AQA GCSE Physics specification. The wide range of activities which include exam questions with clear explanations will allow them to assess their understanding of the content and to recognise those areas which require further attention. The lesson has been designed to cover as much of the topic as possible but the following specification points have been given particular attention: Recall and apply the equation to calculate density Explaining differences in density between states of matter Internal energy and the result of heating the particles in a system Applying the equation to calculate the specific heat capacity Understanding that temperature does not change during changes of state Applying the equation to calculate the specific latent heat Explaining the qualitative relationship between the temperature of a gas and its pressure Applying the equation that links pressure, volume and a constant The engaging PowerPoint guides students on the use of key mathematical skills to aid success with the various calculations
OCR GCSE Physics Topic 1 REVISION (Matter)
GJHeducationGJHeducation

OCR GCSE Physics Topic 1 REVISION (Matter)

(0)
This fully-resourced revision lesson challenges the students on their knowledge of the content detailed in topic 1 (Matter) of the OCR GCSE Physics specification. The wide range of activities, which include exam questions with clear explanations, will allow them to assess their understanding of the content and to recognise those areas which require further attention. The lesson has been designed to cover as much of the module as possible but the following specification points have been given particular attention: Recall and apply the equation to calculate density Describe how and why the atomic model has changed over time Describe the atom and recall the typical size Explain the difference in density between different states of matter Describe how mass is conserved when physical changes occur Describe how physical changes differ from chemical changes Define the term specific heat capacity and distinguish between that and specific latent heat Applying the equation to calculate the specific heat capacity Understanding that temperature does not change during changes of state Applying the equation to calculate the specific latent heat Explaining the qualitative relationship between the temperature of a gas and its pressure Applying the equation that links pressure, volume and a constant Explain how doing work on a gas can increase its temperature Explain why pressure in a liquid varies with depth Most of the resources are differentiated to allow students of differing abilities to access the work and be challenged and the PowerPoint guides the students through the range of mathematical skills which are tested in this module
Astrophysics REVISION (Topic 8 Edexcel IGCSE Physics)
GJHeducationGJHeducation

Astrophysics REVISION (Topic 8 Edexcel IGCSE Physics)

(0)
This is a fully-resourced revision lesson that has been written to include a wide range of activities that challenge the students on their knowledge of astrophysics as detailed in topic 8 of the Pearson Edexcel IGCSE Physics specification. The numerous quiz rounds which include “Shine a LIGHT on any ERRORS” will engage and motivate their students whilst they assess their understanding of the content and recognise any areas that require further attention. The lesson has been designed to include as many of the specification points as possible but the following have been given particular attention: Understanding of the terms Solar system, galaxy and universe Gravitational field strength varies on different planets Gravitational force causes the Moon to orbit the Earth and the planets to orbit the Sun Use the relationship between orbital speed, orbital radius and time period Evolution of stars of a similar mass to our Sun and of stars with larger masses The evidence that supports the Big Bang theory The change in the frequency and wavelength of a wave if the source of the wave is moving in relation to the observer Red-shift as evidence of an expanding universe This topic contains a number of principles or theories which can be poorly understood by students so extra time has been taken to guide them in the formation of descriptions and explanations.
Edexcel IGCSE Physics TOPICS 1-4 REVISION
GJHeducationGJHeducation

Edexcel IGCSE Physics TOPICS 1-4 REVISION

4 Resources
This bundle of fully-resourced revision lessons will engage and motivate the students whilst they assess their understanding of the content of topics 1 - 4 of the Pearson Edexcel IGCSE Physics specification. The lessons cover the following topics: Topic 1: Forces and motion Topic 2: Electricity Topic 3: Waves Topic 4: Energy resources and energy transfers The detailed PowerPoint and accompanying resources contain exam-style questions with clear explanations of answers, differentiated tasks, class discussions and quiz competitions. If you would like to see the quality of the lessons, download the topic 1 revision lesson which is shared for free
AQA GCSE Physics PAPER 1 REVISION LESSONS
GJHeducationGJHeducation

AQA GCSE Physics PAPER 1 REVISION LESSONS

4 Resources
This bundle of fully-resourced revision lessons will engage and motivate the students whilst they assess their understanding of the content of topics 1 - 4 of the AQA GCSE Physics specification as assessed in PAPER 1. The lessons cover the following topics: Topic 1: Energy Topic 2: Electricity Topic 3: Particle model of matter Topic 4: Atomic structure The detailed PowerPoints and accompanying resources contain exam-style questions with clear explanations of answers, differentiated tasks, class discussions and quiz competitions. If you would like to see the quality of the lessons, download the topic 1 revision lesson which has been shared for free
AQA GCSE Physics PAPER 2 REVISION LESSONS
GJHeducationGJHeducation

AQA GCSE Physics PAPER 2 REVISION LESSONS

4 Resources
This bundle of fully-resourced revision lessons will engage and motivate the students whilst they assess their understanding of the content of topics 5 - 8 of the AQA GCSE Physics specification as assessed in PAPER 2. The lessons cover the following topics: Topic 5: Forces Topic 6: Waves Topic 7: Magnetism and electromagnetism Topic 8: Space physics The detailed PowerPoints and accompanying resources contain exam-style questions with clear explanations of answers, differentiated tasks, class discussions and quiz competitions. If you would like to see the quality of the lessons, download the topic 5 revision lesson which has been shared for free
Edexcel GCSE Physics Topic 9 REVISION (Forces and their effects)
GJHeducationGJHeducation

Edexcel GCSE Physics Topic 9 REVISION (Forces and their effects)

(0)
This revision lesson has been filled with activities that will challenge the students on their knowledge and understanding of the content detailed in topic 9 of the Pearson Edexcel GCSE Physics specification. The wide range of activities in the engaging PowerPoint and accompanying resources will check on the knowledge of the forces and their effects topic and allow the students to recognise those areas which need further attention before the mock or terminal GCSE exams. This resource has been designed to cover as much of topic 9 as possible but the following points have received particular attention: What happens when objects can interact at a distance without contact What happens when objects can interact by contact Explain the difference between vector and scalar quantities using examples Draw free body diagrams Recall and use the equation to calculate the moment of a force Recall and use the principle of moments in situations where rotational forces are in equilibrium Explain ways of reducing unwanted energy transfer through lubrication The main task of the lesson which challenges students to use the principle of moments has been differentiated so that differing abilities can access the work
Electricity and circuits REVISION (GCSE)
GJHeducationGJHeducation

Electricity and circuits REVISION (GCSE)

(0)
This fully-resourced revision lesson has been written to cover the major details of the electricity and circuits topic that can be assessed in the GCSE Physics and Combined Science (HT) exams. The engaging PowerPoint and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quiz competitions to allow students to assess their understanding and to ultimately recognise those areas which need further consideration. The following points are covered in this revision lesson: The electrical symbols that represent the electrical components Describe the differences between series and parallel circuits Recall that a voltmeter is connected in parallel One volt is equal to one joule per coulomb Recall and use the equations that calculate energy transferred, charge, potential difference, power and electrical power Recall that an ammeter is connected in series Calculate the currents, potential differences and resistances in series and parallel circuits Explain how current varies with potential difference in resistors Know the functions of the wires in a plug and the safety features The main task of the lesson, which challenges the students to calculate the currents, potential differences and resistances in series and parallel circuits, is differentiated to allow students of differing abilities to access the work
Forces and matter REVISION (Topic 15 Edexcel GCSE Physics)
GJHeducationGJHeducation

Forces and matter REVISION (Topic 15 Edexcel GCSE Physics)

(0)
This revision lesson is fully-resourced and has been written to allow students to assess their understanding of the content detailed in topic 15 (Forces and matter) of the Pearson Edexcel GCSE Physics specification. The engaging and detailed PowerPoint uses a wide range of activities, which includes exam-style questions with clear explanations of the answers, to enable the students to identify those areas which require further attention before the mock or terminal examinations. The lesson was designed to cover as much of the topic as possible but the following points have received particular attention: The difference between elastic and inelastic distortion Recall and use the equation for linear elastic distortion Use the equation to calculate the work done in stretching Describe the relationship between force and extension Recall and use the equation for pressure Describe how pressure in fluids increases with depth and density Use the equation to calculate the magnitude of pressure in liquids Explain that an object in a fluid is subjected to upthrust Calculate the depth at which an object floats Due to the heavy mathematical content of this specification and particularly this topic, a lot of the activities challenge the students on their ability to recall and apply the equations. Step-by-step guides and differentiated resources are used to allow students of differing abilities to access the work.
WJEC GCSE Physics UNIT 2 REVISION LESSONS
GJHeducationGJHeducation

WJEC GCSE Physics UNIT 2 REVISION LESSONS

4 Resources
All of the lessons in this bundle are fully-resourced and have been designed to contain a wide range of activities that will challenge the students on their knowledge and understanding of the content of UNIT 2 of the WJEC GCSE Physics specification. The engaging PowerPoints and accompanying resources cover the following topics: Topic 2.1: Distance, speed and acceleration Topic 2.3: Work and energy Topic 2.4: Further motion concepts Topic 2.7: Types of radiation Topic 2.8: Half-life Topic 2.9: Nuclear decay and nuclear energy To fall in line with the heavy mathematical content of this course, the lessons challenge a range of skills including rearranging formulae, converting units, using standard form and significant figures and percentage change If you would like to see the quality of the lessons, download the topic 2.3 lesson which has been shared for free
WJEC GCSE Physics Topic 2.4 REVISION (Further motion concepts)
GJHeducationGJHeducation

WJEC GCSE Physics Topic 2.4 REVISION (Further motion concepts)

(0)
This revision lesson is fully-resourced and differentiated to allow students of differing abilities to assess their understanding of topic 2.4 (Further motion concepts) of the WJEC GCSE Physics specification. The engaging and detailed PowerPoint and accompanying resources contain exam-style questions, quick tasks, discussion points and a quiz competition which check on the following specification points: The qualitative relationship between mass and velocity in the calculation of momentum Application of the law of the conservation of momentum to perform calculations involving collisions Applying the kinetic energy equation to compare the size of this energy store before and after an interaction Newton’s second law in the form force = change in momentum over time Using equations to model the motion of an object The principle of moments To fall in line with the specification, there is a big emphasis on mathematical skills in this lesson and students are given guidance and assistance to ensure that they can access the work
CIE IGCSE Combined Science P2 REVISION (Work, energy and power)
GJHeducationGJHeducation

CIE IGCSE Combined Science P2 REVISION (Work, energy and power)

(0)
This fully-resourced revision lesson contains a wide range of activities that will challenge the students on their knowledge and understanding of the content detailed in the CORE and SUPPLEMENT sections of topic P2 (Work, energy and power) of the CIE IGCSE Combined Science specification. These activities include exam style questions which will allow the students to assess their progress against the clearly explained answers. There is also a quiz that runs throughout the course of the lesson and this has been designed to maintain engagement and motivation. The following specification points have been covered in this lesson: Recall and use the equation to calculate work done Demonstrate an understanding that work done = energy transferred Understand that an object may have energy due to its motion or position Recall and use the equations to calculate kinetic and gravitational potential energy Recognise the ways that energy is transferred during events and processes Apply the conservation of energy Recall and use the equation to calculate power Distinguish between renewable and non-renewable sources of energy Describe how electricity is obtained from the tides, hydroelectric power and nuclear fission One of the main tasks of the lesson, which challenges the students to apply the law of the conservation of energy, has been differentiated so that differing abilities can access the work
Species and taxonomy (AQA A-level Biology)
GJHeducationGJHeducation

Species and taxonomy (AQA A-level Biology)

(1)
This engaging lesson covers the biological classification of a species, phylogenetic classification and the use of the binomial naming system. The PowerPoint and accompanying resources have been designed to cover point 4.5 of the AQA A-level Biology specification which is titled species and taxonomy. The lesson begins by looking at the meaning of a population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a horse and a donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Although the art of courting might be lost on humans in the modern world, the marabou stork is used as an example to show how courtship behaviour is an essential precursor to successful mating in most organisms. Students are encouraged to discuss other examples of courtship behaviour, such as the release of pheromones and birdsong, so that their knowledge and understanding is broad. Moving forwards, students will learn that species is the lowest taxon in the modern-day classification hierarchy. A quiz runs throughout the lesson and this particular round will engage the students whilst they learn the names of the other 7 taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system. The final part of the lesson briefly looks at how advances in genome sequencing and the comparison of common biological molecules has allowed the relationships between organisms to be clarified. This is a detailed lesson and it is estimated that it will take around 2 hours of A-level teaching time to cover the content and therefore this specification point.