Hero image

Spark Science

Average Rating4.56
(based on 18 reviews)

Spark Science provides high quality science educational resources for secondary school teachers. From dual-coding, literacy and reading tasks, dyslexic friendly backgrounds, and continual Assessment for Learning (AfL) tasks embedded into all our lessons, Spark lessons will increase engagement, participation and understanding for your students.

80Uploads

33k+Views

29k+Downloads

Spark Science provides high quality science educational resources for secondary school teachers. From dual-coding, literacy and reading tasks, dyslexic friendly backgrounds, and continual Assessment for Learning (AfL) tasks embedded into all our lessons, Spark lessons will increase engagement, participation and understanding for your students.
Naming Chemical Compounds
emily_k_brown1994emily_k_brown1994

Naming Chemical Compounds

(0)
A comprehensive, engaging, challenging and interactive lesson package designed with SEN and non-science/non-chemistry specialist teachers in mind! This lesson contains: Lesson powerpoint - including teacher notes and answers in “notes” section Student led lesson worksheet Teacher answer sheet Lesson resources contain: In-built challenge tasks throughout In-built scaffolded learning for lower abilities Various activites to assess progress and understanding that you can tailor to fit any class or available resources Objectives: Students will be able to… Name simple compounds ending in –ide, -hydroxide and –ate Name simple compounds using the mono-, di-, tri- naming system Be able to identify the elements present in a compound from its name Be able to name a compound from its formula This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions. This lesson contains AFL tasks which require mini-whiteboards but can be adapted if these are not available.
KS3 - Joints
emily_k_brown1994emily_k_brown1994

KS3 - Joints

(0)
This is a KS3 Biology lesson covering the structure and types of joints in the body and includes the chicken leg dissection along with pre-made risk assessment and alternative written task for students who opt-out (all with answer sheets!). This resource contains: Teacher powerpoint Student worksheet and answer sheet (PDF and editable word) Alternative work (for students who do not want to do the dissection) and answer sheet (PDF and editable word) Lesson Objectives: Name and give examples of the types of joint found in the human body Describe the role of joints in movement Label the structure of a joint Carry out the dissection of a joint
KS3 - Formation of the Solar System
emily_k_brown1994emily_k_brown1994

KS3 - Formation of the Solar System

(0)
This lesson is the third lesson in the “Space” topic and covers the basics of how our solar system formed. The lesson contains links to online videos, whole class AFL tasks to assess understanding and two independent tasks for students to complete. This lesson is designed to be easy to teach, student led and is ideal for non-specialist teachers. This Lesson Contains: Lesson powerpoint, including activity delivery instructions for teachers, full answers, AFL whiteboard task and discussion activities Student Gap fill summary worksheet (PDF) AND answer sheet (PDF) Student crossword activity worksheet (PDF) AND answer sheet (PDF) Lesson Objectives: Describe how the Solar System formed
Chemical Formulas and Counting Atoms
emily_k_brown1994emily_k_brown1994

Chemical Formulas and Counting Atoms

(0)
A comprehensive, engaging, challenging and interactive lesson package designed with non-science/non-chemistry specialist teachers in mind! **This lesson contains: ** Lesson powerpoint - including teaching notes and answers in “notes” section Student led lesson worksheet Teacher answer sheet Lesson resources contain: In-built challenge tasks throughout In-built scaffolded learning for lower abilities Various activites to assess progress and understanding that you can tailor to fit any class or available resources Lesson Objectives: Students will be able to… Describe what a chemical symbol is and explain why we use them Identify elements from their chemical symbols using a periodic table Classify chemical formulas as representing either elements or compounds Understand how to count the number of atoms in a chemical formula containing subscripts This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up. This lesson contains AFL which makes use of molymods and mini-whiteboards, but can be adapted if these resources are not available.
Testing for Positive Metal Ions
emily_k_brown1994emily_k_brown1994

Testing for Positive Metal Ions

(0)
A 1-2 lesson pack covering flame tests and positive metal ion tests. This resource is designed for the AQA Triple Chemistry required practical from “Chemical Analysis”, and is relevant to higher and foundation students. Lesson Objectives Carry out simple flame tests to identify positive metal ions Carry out simple precipitate tests to identify positive metal ions Describe how to carry out a flame test and a precipitate test, including the names of any important reactants Describe the problems and limitations of using flame tests and precipitate tests to identify positive metal ions This resource contains: Lesson powerpoint - including starter activity, practical instructions, tables, challenge task, multiple choice quiz plenary, and full answers Student worksheet - including practical instructions, tables, and practical quesitons (PDF and editable word versions) Student worksheet answers (PDF and editable word versions) Risk assessment/order form - containing up to date CLEAPPS guidance as of Oct 2023.
Electrochemical Cells and Fuel Cells Bundle
emily_k_brown1994emily_k_brown1994

Electrochemical Cells and Fuel Cells Bundle

2 Resources
This bundle contains the lessons, powerpoints and all relevant resources for teaching the Separate Science GCSE Chemistry AQA content on electrochemical cells and fuel cells. This bundle contains 3-4 lessons of content including: Lesson 1: What are Electrochemical Cells? Lesson Objectives: Describe what an electrochemical cell is and what we use it for Describe how to make an electrochemical cell Identify factors which affect the size of the voltage produced by an electrochemical cell This lesson contains: Lesson powerpoint Student practical investigation Teacher notes on how to deliver lesson slides/content and answers Lesson 2: How do Electrochemical Cells Work? Lesson Objectives: Recall the definitions for oxidation and reduction Identify which elements are oxidised and reduced in an electrochemical cell (H) – write half equations for oxidation and reduction taking place in electrochemical cells Explain why alkaline/non-rechargeable batteries eventually stop working This lesson contains: Lesson powerpoint, containing animation about how electrochemical cells produce electrical current and the reactions that take place within it Student exam questions (23 marks worth) from AQA syllabus with mark scheme Teacher notes on how to deliver lesson slides/content and answers Lesson 3/4: What are Fuel Cells? Lesson Objectives: Describe, in basic terms, how a hydrogen fuel works (Higher only) write balanced half equations for the reactions taking place inside a hydrogen fuel cell Describe advantages and disadvantages of hydrogen fuel cells Evaluate the use of hydrogen fuel vehicles compared to electric and petrol vehicles Lesson resources include: Lesson powerpoint with printable diagrams for students Explanations of half equations from fuel cell (both acid cell (not AQA) and alkaline cell (AQA) version) and balancing them Relevant video links 6 marker question and mark scheme Exam question pack on fuel cells and energy Plenary AFL multiple choice quiz and debate activity
KS3 - Reading and Analysing Graphs
emily_k_brown1994emily_k_brown1994

KS3 - Reading and Analysing Graphs

(0)
This is the 5th lesson in the “Working as a Scientist 2” Year 8 topic. This lesson teaches students how to identify relationships in graphs using the line of best fit and how to describe trends in graphs. It also covers the ways we can improve our confidence in graphs/data, how to deal with outliers, and how to read values from a graph using the line of best fit. It is a comprehensive lesson, with large amounts of student participation on mini-whiteboards (so loads of chances for AFL and intervention if needed). The lesson can be lenghtened or shortened with slides cut out depending on student ability and prior knowledge. Students can then practice their skills independently by drawing and analysing their own graph on the student worksheet. Lesson resources: Lesson powerpoint with all answers built in automatically, various mini-whiteboard AFL tasks for students, discussion activities, scaffolding and dual coding to support lower ability/EAL/AEN students. Student worksheet PDF Student worksheet answers PDF Lesson objectives: Identify linear and directly proportional relationships Take readings from a graph using a line of best fit Describe how to improve confidence in conclusions made from graphs For this lesson you will need mini-whiteboards
Pure Substances (Including Practical Investigation)
emily_k_brown1994emily_k_brown1994

Pure Substances (Including Practical Investigation)

(0)
A comprehensive, engaging, challenging and interactive lesson package designed with non-science/non-chemistry specialist teachers in mind! This lesson contains: Lesson powerpoint - including teacher notes and answers in “notes” section Student led lesson worksheet (including practical worksheet) Teacher answer sheet Practical risk assessment/order form Lesson resources contain: In-built challenge tasks throughout In-built scaffolded learning for lower abilities Various activites to assess progress and understanding that you can tailor to fit any class or available resources Objectives: Students will be able to… Describe what a pure substance is Identify examples of pure substances in every day life Identify pure substances from particle diagrams and examples Carry out a practical investigation to identify pure substances This lesson contains a student led lesson and practical which focuses on students learning through discussion and investigation. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions. This lesson contains AFL tasks which require mini-whiteboards, but can be adapted if these are not available.
Counting Atoms in a Chemical Formula
emily_k_brown1994emily_k_brown1994

Counting Atoms in a Chemical Formula

(0)
A comprehensive, engaging, challenging and interactive lesson package designed with non-science/non-chemistry specialist teachers in mind! This lesson contains: Lesson powerpoint - including teacher notes and answers in “notes” section Student led lesson worksheet Teacher answer sheet Lesson resources contain: In-built challenge tasks throughout In-built scaffolded learning for lower abilities Various activites to assess progress and understanding that you can tailor to fit any class or available resources Objectives: Students will be able to… Identify elements in chemical formula (using a periodic table) Count the number of atoms in formulas containing subscripts Count the number of atoms in formulas containing multipliers This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions. This lesson contains AFL tasks which require mini-whiteboards, but can be adapted if these are not available.
Chemical Mixtures
emily_k_brown1994emily_k_brown1994

Chemical Mixtures

(0)
A comprehensive, engaging and interactive lesson package designed with non-science/non-chemistry specialist teachers in mind! This lesson contains: Lesson powerpoint - including teacher notes and answers in “notes” section Student led lesson worksheet Teacher answer sheet Elements, Compounds and Mixtures printable decision tree Lesson resources contain: In-built challenge tasks throughout In-built scaffolded learning for lower abilities Various activites to assess progress and understanding that you can tailor to fit any class or available resources Objectives: Students will be able to… Describe what a mixture is Give examples of mixtures in every day life Identify mixtures from particle diagrams and examples This lesson contains a student led lesson sheet, with the focus being on students learning through doing, practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions. This lesson contains AFL tasks which require mini-whiteboards and molymods, but can be adapted if these are not available.
Extracting Aluminium from Aluminium Oxide
emily_k_brown1994emily_k_brown1994

Extracting Aluminium from Aluminium Oxide

(0)
A full lesson designed for GCSE chemistry AQA specification. This lesson covers the case study of the extraction of aluminium oxide, the role of cryolite, what happens to the aluminium and oxide ions at the electrodes, and the need for the replacement of the positive electrode. This lesson contains A lesson powerpoint including all useful youtube video links, interactive plenary multiple choice quiz, electroplating challenge task and complete answers. A guided reading activity with quesitons and complete answer sheet (PDF and editable versions) An alternative information hunt sheet to be used with videos and/or the AQA GCSE Chemistry textbook, with complete answers (PDF and editable versions) Video clip to aid in completion of both sheets Lesson Objectives State two reasons why extracting aluminium oxide from its ore is expensive Describe why cryolite is added to aluminium oxide during electrolysis Describe and explain what happens to ions at the positive and negative electrode (and give relevant half equations (Higher only)) Explain why the positive electrode must continually be replaced
KS3 - Breathing
emily_k_brown1994emily_k_brown1994

KS3 - Breathing

(0)
This is a KS3 Biology lesson covering the physical changes that happen in our bodies when we breathe (limited to diaphragm, rib cage and lung volume) as well as using the bell jar demonstration of the effect of pressure on lung volume. This lesson also contains a practical to measure lung volume and manipulate the data of that practical. This lesson contains: Teacher powerpoint - including teacher guidance and answers Student printable table (PDF and Word) Lesson Objectives: Describe the physical changes that occur when a person inhales and exhales Describe a method used to estimate lung volume WS: Measure lung volume Correlate and analyse data from a practical experiment to draw conclusions
KS3 - Balanced and Unbalanced Forces
emily_k_brown1994emily_k_brown1994

KS3 - Balanced and Unbalanced Forces

(0)
A comprehensive, engaging, challenging and interactive lesson package designed with non-science/non-physics specialist teachers in mind! This lesson covers what balanced and unbalanced forces are, how to calculate resultant forces in one dimension, and the effects balanced and unbalanced forces have on the motion of an object. This resource contains: Lesson powerpoint - including teacher notes, interactive AFL tasks, student written task, and full answers to all activities. Lesson resources contain: In-built challenge tasks throughout In-built scaffolded learning for lower abilities Various activites to assess progress and understanding that you can tailor to fit any class or available resources Objectives: Students will be able to… Describe the difference between balanced and unbalanced forces Explain why objects are in equilibrium Explain the changing motion of objects Calculating resultant forces in one dimension
GCSE Chemistry - Diamond and Graphite
emily_k_brown1994emily_k_brown1994

GCSE Chemistry - Diamond and Graphite

(0)
A comprehensive, engaging, challenging, and interactive lesson package designed with non-science/non-chemistry specialist teachers in mind. This lesson covers content from GCSE AQA Chemistry and Combined Science Trilogy. It covers the properties, structure and bonding in graphite and diamond, as well as explaining the key properties of diamond and graphite (electrical conductivity, melting point, hardness) to its structure and bonding. This lesson contains: Lesson powerpoint - including teacher notes, delivery instructions and answers in “notes” section Bank of exam style questions on graphite and diamond taken from past AQA papers with mark schemes (PDF and editable versions) Printable images of graphite and diamond for students to annotate (PDF and editable versions) Lesson resources contain: In-built challenge tasks throughout AFL mini-whiteboard tasks throughout In-built scaffolded learning for lower abilities and alternative task for lower ability classes Colour coding throughout to aid EAL, SEN and other learners Various activites to assess progress and understanding that you can tailor to fit any class or available resources Full answers to all questions (mostly automated into slides to make it easier for you to deliver) Objectives: Students will be able to… State some properties of diamond and graphite Compare the properties of diamond and graphite Compare the structure and bonding in diamond and graphite Explain the similarities and differences in the properties of diamond and graphite in terms of structure and bonding
KS3 - Elements, Compounds and Mixtures Bundle
emily_k_brown1994emily_k_brown1994

KS3 - Elements, Compounds and Mixtures Bundle

5 Resources
A comprehensive, complete, engaging and challenging set of lessons and activities to teach students the basics of elements, compounds, mixtures and chemical formulas. This scheme/package is designed with non-science/non-chemistry specialist teachers in mind! Lessons included in this bundle: Elements and Compounds Chemical Formulas Counting atoms in a Formula Pure Substances Mixtures Included in each lesson: Lesson powerpoint - including teacher notes and answers in “notes” section Student-led lesson worksheet Teacher answer sheet Lesson resources contain: In-built stretch and challenge tasks throughout In-built scaffolded learning for lower abilities Various AFL activities to assess progress and understanding that you can tailor to fit any class or available resources (these include “think, pair, share”, molymod activities, mini-whiteboard quizzes) Relevant risk assessments for any practical work (updated as of March 2023) By the end of the topic, students will: Know what an “element” and a “compound” is Describe the difference between an element and a compound Know what an “atom” and a “molecule” are Describe the difference between an atom and a molecule Draw/make particle diagrams and models to represent elements, compounds, single atoms and molecules Understand why scientists use chemical symbols to represent elements Identify simple elements from their chemical symbols Identify elements in a chemical formula Classify chemical formulas as elements or compounds Count the number of atoms in a basic formula Identify elements in a chemical formula Count the number of atoms in formulas containing subscripts Count the number of atoms in formulas containing multipliers Describe what a pure substance is Identify examples of pure substances in everyday life Identify pure substances from particle diagrams and examples Carry out a practical investigation to identify pure substances Describe what a mixture is Give examples of mixtures in everyday life Identify mixtures from particle diagrams and examples Draw/make models representing mixtures
KS3 Introduction to Waves
emily_k_brown1994emily_k_brown1994

KS3 Introduction to Waves

(0)
This lesson covers what longitudinal and transverse waves are, the features of both kinds of waves, examples of these waves and what happens when waves meet barriers or each other. This is a perfect introduction lesson to KS3 topic on sound and waves. This Lesson Contains: Lesson powerpoint, including instructions for key demonstrations of both types of waves, full answers, plenary tasks, AFL whiteboard and discussion activities Student worksheet (PDF and editable version) Student worksheet answers sheet (PDF and editable version) Lesson Objectives Name the two different types of waves and label their features Give an example of each kind of wave Describe what happens when waves hit a barrier Describe what happens when waves superimpose
KS3 - Tissues and Organs
emily_k_brown1994emily_k_brown1994

KS3 - Tissues and Organs

(0)
This is a KS3 Biology lesson covering the defintions of tissues and organs, examples of both in humans and plants, and the functions of some of the key organs. This lesson may require students to have access to the internet. This resource contains: Teacher powerpoint including teacher guidance and answers Student worksheet (PDF and Editable versions) Student worksheet answers (PDF and Editable versions) Lesson Objectives: Define the terms “tissue” and “organ” Identify some of the key organs in the human body Identify some of the key organs in plants Describe what some key organs do
GCSE Chemistry AQA (9-1) - Ionic Bonding Dot-and-Cross Diagrams
emily_k_brown1994emily_k_brown1994

GCSE Chemistry AQA (9-1) - Ionic Bonding Dot-and-Cross Diagrams

(1)
This resource contains a worksheet where students can practice drawing ionic bonding for a range of examples. Examples get harder as the sheet progresses. First questions are structured with electron shells and brackets drawn for them. Resource contains PDF copy and an editable PPT version. Fully drawn answer sheet attached at the end of each document.