Hero image

HB science resources

Average Rating3.40
(based on 29 reviews)

A Science teacher since 2016 creating and sharing resources he uses with his own classes.

551Uploads

80k+Views

45k+Downloads

A Science teacher since 2016 creating and sharing resources he uses with his own classes.
Non Newtonian Fluids
hbscienceresourceshbscienceresources

Non Newtonian Fluids

(0)
Originally created for the BTEC Applied Science level 3 qualification Unit 5 - Physics. By the end of the lesson learners should be able to: Recall the difference between Newtonian and Non-Newtonian fluids Describe pseudoplastic, dilatant, thixotropic, and rheopectic fluids. Justify the uses of these different fluids. The resource contains past paper questions and mark scheme answers. Slides were originally created using google slides, opening in microsoft powerpoint might cause slight misalignment - open in google slides to avoid this.
Permanent and Induced Magnets
hbscienceresourceshbscienceresources

Permanent and Induced Magnets

(0)
By the end of the lesson learners should be able to: Identify permanent and induced magnets. Describe what’s meant by a permanent and induced magnet. Explain why magnets are used in industry.
Forces and Elasticity
hbscienceresourceshbscienceresources

Forces and Elasticity

(0)
By the end of the lesson learners should be able to: State some examples of elastic and inelastic objects. Describe the effect of two pulling forces on an elastic object. Explain the incident that can cause an elastic object to become inelastic.
Particle Motion in Gases
hbscienceresourceshbscienceresources

Particle Motion in Gases

(0)
By the end of the lesson learners should be able to: State what is meant by pressure. Describe how gas particles interact with the wall of the container. Explain why each of the following increases pressure: Increasing temperature, Increasing the amount of gas particles, Decreasing volume of the container.
Detecting Sound - The Ear
hbscienceresourceshbscienceresources

Detecting Sound - The Ear

(0)
By the end of the lesson learners should be able to: Identify the parts that make up the ear. Describe how the ear manipulates sound. Explain why people can experience hearing loss / damage.
Newton's First Law
hbscienceresourceshbscienceresources

Newton's First Law

(0)
By the end of the lesson learners will be able to: State Newton’s First law. Calculate Resultant Forces. Explain why changing in speed requires a force.
Background Radiation
hbscienceresourceshbscienceresources

Background Radiation

(0)
By the end of the lesson learners will be able to: Identify what’s meant by a radioactive atom. Describe how a GM tube measures radiation. Explain why radioactive sources become less dangerous as time passes.
Simple Harmonic Motion Waves
hbscienceresourceshbscienceresources

Simple Harmonic Motion Waves

(0)
By the end of the lesson learners will be able to: Identify harmonics on a string. Describe how the harmonics affect the wavelength. Explain why a greater wavelength leads to a sound containing more bass.
Sound Topic KS3
hbscienceresourceshbscienceresources

Sound Topic KS3

5 Resources
A series of lessons aimed towards KS3 students (yrs 11-14). Lessons require no preparation and are suitable for use by a cover teacher.
Moving Heat
hbscienceresourceshbscienceresources

Moving Heat

(0)
Originally created for the BTEC Applied Science level 3 qualification Unit 5 - Physics. By the end of the lesson learners should be able to: Recall the equipment needed for moving heat. Describe how altering the set-up of the system can lead to refrigeration or a heat pump being created. Use the coefficient of performance calculations for a heating system. The resource contains past paper questions and mark scheme answers. Slides were originally created using google slides, opening in microsoft powerpoint might cause slight misalignment - open in google slides to avoid this.
Renewable and Non-Renewable Energy Resources
hbscienceresourceshbscienceresources

Renewable and Non-Renewable Energy Resources

(0)
A comprehensive lesson that teaches students the difference between renewable and non-renewable energy resources. Tasks are differentiated to suit the needs of each learner. Progress checks take place after each success criteria to measure the progress of learners. By the end of the lesson students should be able to: Success criteria: Define renewable and non-renewable energy sources and list examples Describe the difference between renewable and non-renewable energy resources Explain how electricity is generated in a power station Learning objective: Investigate the differences in types of energy resources and evaluate the importance of some over others. Powerpoint contains 18 slides.
Energy Topic KS4
hbscienceresourceshbscienceresources

Energy Topic KS4

5 Resources
A series of lessons targeted for a KS4 audience (yrs 14-16). Lessons require no preparation and are suitable for use with a cover teacher.
Hooke's law and the Spring Constant K
hbscienceresourceshbscienceresources

Hooke's law and the Spring Constant K

(0)
A resource containing 2 powerpoint slides for 2 lessons and a worksheet for applying Hooke’s law and analysing data. I run the resource as an initial practical for investigating Hooke’s law and the second lesson to further solidify theory. Tasks are differentiated to suit the needs of each learner. Progress checks take place after each success criteria to measure the progress of learners. For the practical lesson: By the end of the lesson students should be able to: Learning objective: Investigate the effects of forces on the extension of a spring. Success criteria: -Identify independent and dependent variables. -Describe how to write a method concerning spring extension. -Explain why repeatability and reliability are important factors within experiments. This lesson contains 17 slides. For the theory lesson: By the end of the lesson students should be able to: Learning objective: To analyse the results and draw conclusions between the spring practical and Hooke’s law theory. Success criteria: Identify the forces needed to extend and compress a spring. Describe Hooke’s law. Explain why the pattern for Hooke’s law does not remain indefinitely. This lesson contains 17 slides. The worksheet contains 2 pages.
Drag Forces friction and air resistance
hbscienceresourceshbscienceresources

Drag Forces friction and air resistance

(0)
A resource containing a comprehensive powerpoint slideshow that will allow for learners to learn about drag forces friction and air resistance. Tasks are differentiated to suit the needs of each learner. Progress checks take place after each success criteria to measure the progress of learners. By the end of the lesson students should be able to: Learning objective: Develop an understanding of how drag forces affect the movement of an object. Success criteria: Identify 2 drag forces. Describe how drag forces affect objects. Explain why air resistance and friction can be useful and a nuisance. This lesson contains 22 slides
The Universe and Our solar system
hbscienceresourceshbscienceresources

The Universe and Our solar system

(0)
A comprehensive lesson which teaches students about the universe and its contents. Students will then progress to learn about our solar system and orbiting objects in space. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Develop an understanding of what makes up our universe. By the end of the lesson learners should be able to: Success criteria: I can identify components of the universe. I can describe our solar system. I can explain why gravity is needed for solar systems to survive. Powerpoint contains 31 slides.
Static Electricity
hbscienceresourceshbscienceresources

Static Electricity

(0)
A comprehensive lesson which teaches students about charges and how these charges contribute towards static electricity. Students will then progress to find how these charges interact with another and generate current. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Justify how charges behave and how this contributes to electricity. By the end of the lesson learners should be able to: Success criteria: Identify the 2 charges. Describe how materials can become charged. Explain why static shocks occur. Powerpoint contains 20 slides. A worksheet is also included to complement the Van Der Graaf.
Section 3 Waves Revision poster Physics combined IGCSE
hbscienceresourceshbscienceresources

Section 3 Waves Revision poster Physics combined IGCSE

(0)
A revision poster that includes material needed for section 3 of the edexcel iGCSE combined science double award physics. Section 3 Waves A blank copy for students to fill in is also included for students to test their knowledge. I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached. Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
Section 1 Forces and Motion Revision poster Physics combined IGCSE
hbscienceresourceshbscienceresources

Section 1 Forces and Motion Revision poster Physics combined IGCSE

(0)
A revision poster that includes material needed for section 1 of the edexcel iGCSE combined science double award physics. Section 1 - Forces and Motion A blank copy for students to fill in is also included for students to test their knowledge. I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached. Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.