Hero image

475Uploads

143k+Views

63k+Downloads

OCR A level Chemistry: Aromatic Compounds
srshaw89srshaw89

OCR A level Chemistry: Aromatic Compounds

4 Resources
OCR A level Chemistry: Aromatic Compounds is apart of the Module 6: Organic Chemistry and Analysis. All presentations come with worked examples, solutions and homeworks Molecular, empirical, skeletal formula for benzene. The Kekulé model for benzene Evidence against the Kekule model The delocalised model for benzene Nomenclature for benzene rings and aromatic (arene) compounds Naming benzene containing compounds Drawing benzene containing compounds Defining an electrophile Substitution reactions Nitration of Benzene Reaction mechanisms Halogenation of Benzene Common Halogen Carriers Friedel-Crafts Alkylation Reactions Acyl Chloride Acylation Reactions of Benzene Reactivity of Alkenes and Arenes Naming phenols Distinguishing between phenols and alcohols Distinguishing between phenols and alkenes Distinguishing between phenols and carboxylic acids Phenol as a weak acid Electrophilic reactions with phenols Comparing and explaining the reactivity of phenols and benzene Naming positions on the aromatic ring Activating groups and deactivating groups 2-and-4-directing and 3-directing groups ortho-and-para directing and meta directing groups Two-step synthesis routes for benzene using directing groups. Nitration of benzene Halogenation of benzene Friedel-Crafts Alkylation of benzene
OCR A level Physics: Ideal Gas
srshaw89srshaw89

OCR A level Physics: Ideal Gas

4 Resources
OCR A level Physics: Ideal Gas is a part of the Module 5: Newtonian World and Astrophysics. All presentations come with worked examples, solutions and homeworks.
OCR AS level Physics: Materials
srshaw89srshaw89

OCR AS level Physics: Materials

4 Resources
OCR AS level Physics presentations for module 3: Materials. All presentations come with worked examples, solutions and homeworks. This covers topics from Hooke’s Law to Young Modulus.
OCR AS level Physics: Waves 2
srshaw89srshaw89

OCR AS level Physics: Waves 2

6 Resources
OCR AS level Physics presentations for module 4: Waves 2 All presentations come with worked examples, solutions and homeworks. This covers topics from Superposition of Waves to Harmonics with different boundary conditions.
OCR A level Physics: Thermal Physics
srshaw89srshaw89

OCR A level Physics: Thermal Physics

5 Resources
OCR A level Physics: Thermal Physics apart of the Module 5: Newtonian World and Astrophysics. All presentations come with worked examples, solutions and homeworks.
OCR AS level Physics: Laws of Motion
srshaw89srshaw89

OCR AS level Physics: Laws of Motion

5 Resources
OCR AS level Physics presentations for module 3: Materials. All presentations come with worked examples, solutions and homeworks. This covers topics from Newton’s laws to conservation of momentum in two dimensions.
OCR AS level Physics: Waves 1
srshaw89srshaw89

OCR AS level Physics: Waves 1

9 Resources
OCR AS level Physics presentations for module 4: Waves 1 All presentations come with worked examples, solutions and homeworks. This covers topics from wave properties to Snell’s law and total internal reflection.
OCR AS level Physics: Forces in Action
srshaw89srshaw89

OCR AS level Physics: Forces in Action

9 Resources
OCR AS level Physics presentations for module 3: Forces in Action. All presentations come with worked examples, solutions and homeworks. This covers topics from weight as a force to Archimedes’ principle.
GCSE Chemistry: Alkenes
srshaw89srshaw89

GCSE Chemistry: Alkenes

(0)
This PowerPoint presentation with worked examples and student questions covers: • Unsaturated hydrocarbons • Comparing alkanes and alkenes • Mnemonic device for naming alkenes • General formula for alkenes • Completing addition reactions for alkenes
OCR AS level Physics: Electrical Circuits
srshaw89srshaw89

OCR AS level Physics: Electrical Circuits

6 Resources
OCR AS level Physics presentations for module 4: Energy, Power, and Resistance. All presentations come with worked examples, solutions and homeworks. This covers topics from Kirchhoff’s laws to potential dividers and sensing circuits.
OCR AS level Physics: Quantum Physics
srshaw89srshaw89

OCR AS level Physics: Quantum Physics

4 Resources
OCR AS level Physics presentations for module 4: Quantum Physics. All presentations are full lesson PowerPoints with worked examples and homeworks with complete worked answers. The Photon Model Energy of a single photon Converting from electron-volts to Joules. Frequency of the electromagnetic spectrum Determining Plank’s constant with LEDs Threshold potential difference difference Photoelectric Effect Threshold frequency Producing photoelectrons Kinetic energy of photoelectrons Linking frequency and wavelength The electromagnetic spectrum, frequency and energy. Einstein’s Photoelectric Equation The photoelectric equation Work function and Kinetic Energy Determining work function from a graph Determining threshold frequency from a from graphical analysis. Determining Plank’s constant from graphical analysis. Wave Particle Duality deBroglie wavelength equation Diffraction of electrons and protons Comparing wavelengths of particles with different masses Kinetic energy and wavelength
OCR A level Chemistry: Amines, Amino Acids, and Polymers
srshaw89srshaw89

OCR A level Chemistry: Amines, Amino Acids, and Polymers

3 Resources
OCR A level Chemistry: Aromatic Compounds is apart of the Module 6: Organic Chemistry and Analysis. All presentations come with worked examples, solutions and homeworks. 27.1 Amines 27.2 Amino acids, Amides and Chirality 27.3 Condensation Polymers Aliphatic and aromatic hydrocarbons Amines being derived from ammonia (NH3) Classifying amines as primary, secondary, and tertiary Naming amines Naming ammonium salts Amines neutralisation reactions with acids Preparation of aliphatic amines Preparation of aromatic amines Locants: alpha, beta, and gamma Functional groups of amino acids General formula for amino acids Reactions of amino acids (alkali and acid) Esterification of amino acids Amide functional groups Naming amide molecules Drawing optical isomers Explanation of superimposable and non-superimposable images Identifying chiral centers Recap of addition polymerisation Identifying monomers and repeat units from condensation polymers Polyesters and ester links Polyamides and amide links Polyesters and polyamides formed from one monomer Polyesters and polyamide formed from two monomers Alkali hydrolysis of polyamides and polyesters Acid hydrolysis of polyamides and polyesters
OCR AS level Physics: Work, Energy and Power
srshaw89srshaw89

OCR AS level Physics: Work, Energy and Power

4 Resources
OCR AS level Physics presentations for module 3: Work, Energy and Power. All presentations come with worked examples, solutions and homeworks. This covers topics from conservation of energy to derivations for kinetic energy.
OCR AS level Physics: Energy, Power, and Resistance
srshaw89srshaw89

OCR AS level Physics: Energy, Power, and Resistance

11 Resources
OCR AS level Physics presentations for module 4: Energy, Power, and Resistance. All presentations come with worked examples, solutions and homeworks. This covers topics from circuit symbols to paying for electricity. All circuit symbols required for OCR A level physics Polarity of cells and batteries Electron flow and conventional current Calculating the base SI units for volts Comparing potential difference and electromotive force (emf). Circuit diagrams for measuring potential difference and emf. Calculating energy dissipated in a circuit. The structure of an electron gun. The electron gun in the history of science (J.J. Thomson). Rearranging equations to equate kinetic energy and work done. Accelerating potential differences Comparing the protons and electrons accelerated in a potential difference Definition of an ohm. Temperature and resistance for metallic conductors (wires) The ohm in base SI units I against V graphs and resistance I-V Characteristics curves for ohmic components I-V Characteristics curves for non-ohmic components Circuit diagrams used to measure I and V. Describing I-V Characteristics curves Polarity of diodes Conventional current and diodes Plotting I-V curves for diodes Describing I-V curves for diodes Factors affecting resistance Calculating resistivity Resistivity and temperature Experimentally determining resistivity Using a graph to calculate resistivity Thermistor uses Thermistors with negative temperature coefficients Plotting I-V curves for thermistors Creating an experiment to test thermistors. Materials and uses of LDRs Creating an experiment to understand LDRs LDRs relationship with light intensity Converting time to hours Using different units for electrical energy Converting from J to kW hr Calculating the cost of using different electrical appliances.
GCSE Chemistry: Alcohols
srshaw89srshaw89

GCSE Chemistry: Alcohols

(0)
This PowerPoint presentation with worked examples and student questions covers: • Functional groups of alcohols, alkanes, and alkenes. • Comparing incomplete and complete combustion of alcohols • Mnemonic device for naming alcohols • General formula for alcohols • Drawing the structural formula for alcohols
OCR A level Physics: Circular Motion
srshaw89srshaw89

OCR A level Physics: Circular Motion

3 Resources
OCR A level Physics: Thermal Physics apart of the Module 5: Newtonian World and Astrophysics. All presentations come with worked examples, solutions and homeworks.
OCR A level Physics: Stars
srshaw89srshaw89

OCR A level Physics: Stars

7 Resources
OCR A level Physics: Chapter 19 Stars is apart of the Module 5: Newtonian world and Astrophysics. All presentations come with worked examples, solutions and homeworks. 19.1 Objects in the Universe 19.2 Life Cycles of Stars 19.3 Hertzsprung-Russell Diagram 19.4 Energy Levels in Atoms 19.5 Spectra 19.6 Analysing Starlight 19.7 Stellar Luminosity The size of astronomical objects: Universe, Galaxies, Solar systems, Stars, Planets, Planetary satellites, Comets, Artificial planetary satellites Comparing planets and comets The birth of stars Stars in equilibrium during the main sequence Calculating mass in kg from solar mass Life cycle of stars with a mass between 0.5 and 10 solar masses Life cycle of stars with a mass above 10 solar masses Pauli exclusion principle and electron degeneracy pressure Red giants and white dwarfs The Chandrasekhar limit Red supergiants to black holes and neutron stars Stellar nucleosynthesis Definition of luminosity Usual axis choice of a HR diagram. Identifying the positions of the main sequence, white dwarfs, red giants, and red supergiants. Description of how stellar evolution is shown in a Hertzsprung-Russell diagram Atoms have different electron arrangements Ground state energy Bound electron states being negative Converting between joules and electronvolts Calculating the change of energy between energy states Calculating a photon’s frequency and wavelength The electromagnetic spectrum and wavelengths Definition of spectroscopy Electrons and energy levels Continuous spectra Emission spectra from gases Absorption spectra from gases Electromagnetic interference Double slit experiment Path and phase difference Diffraction grating The grating equation Lines per millimeter to grating spacing Maximum order, n Maximum number of maxima The electromagnetic spectrum, frequency/wavelength, and temperature Black body radiation Wein’s displacements law Stefan’s law (Stefan-Boltzmann law)
GCSE Chemistry: Electrolysis of Solutions
srshaw89srshaw89

GCSE Chemistry: Electrolysis of Solutions

(0)
This PowerPoint presentation with worked examples and student questions covers: • The position of metals and non-metals on the periodic table • The ions metals and non-metals form • The ion composition of solutions • Electrodes, cations and anions • The products of electrolysis of solutions • Keyword descriptions and revision tips
OCR A level Physics: Radioactivity
srshaw89srshaw89

OCR A level Physics: Radioactivity

6 Resources
OCR A level Physics: Chapter 25 Radioactivity is apart of the Module 6: Particle and Medical Physics All presentations come with worked examples, solutions and homeworks. 25.1 Radioactivity 25.2 Nuclear decay equations 25.3 Half-life and Activity 25.4 Radioactive Decay Calculations 25.5 Modelling Radioactive Decay 25.6 Radioactive Dating Types of ionising radiation (alpha, beta-plus/beta-minus, gamma) Penetration power and ionising power Detecting radiation with a Geiger (GM tube) counter Background radiation and correct count rates Electric and magnetic fields affect ionising radiation Cloud chambers Typical speeds of radiation produced form nuclear decays Conservation rules for nuclear decays Nuclear notation Alpha decays Beta-minus and beat-plus decays Gamma decays Decay chains The reason why radioactive decays are considered random and spontaneous Rolling dice being a good analogue for radioactive decays Definition of half-life Determining half-life from a graph. Calculating half-life from a table of data. Activity of a sample in Bq The decay constant derivation Decay constant and half-life Using exponentials to calculate activity and number of nuclei present Solving Differential Equations (beyond A-level Physics course) Iterative Method Selecting appropriate time intervals Comparing answers from the iterative method and exact solution. State what isotopes of carbon are used in carbon dating. Explain how carbon dating works. Calculate the age of objects with carbon dating.