A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This lesson describes the tests that detect reducing and non-reducing sugars and starch using Benedict’s solution and iodine/potassium iodide. The PowerPoint and accompanying resource are part of the last lesson in a series of 4 lessons which have been designed to cover the content of topic 1.2 (Carbohydrates) of the AQA A-level Biology specification.
The lesson begins with an explanation of the difference between a qualitative and quantitative test so that the students recognise that the two tests described within this lesson indicate the presence of a substance but not how much. The students are likely to have met these tests at GCSE so this lesson has been planned to build on that knowledge and to add the knowledge needed at this level. A step by step guide walks the students through each stage of the tests for reducing and non-reducing sugars and application of knowledge questions and prior knowledge checks are included at appropriate points to ensure understanding is complete. Time is also taken to ensure that students understand the Science behind the results. The rest of the lesson focuses on the iodine test for starch and the students will learn that the colour change is the result of the movement of an ion into the amylose helix.
This bundle contains 19 lessons which are engaging and highly detailed in order to cover the difficult content as set out in topic 9 (Control systems) of the Edexcel A-level Biology B specification.
The lesson PowerPoints and accompanying resources contain a wide variety of tasks which cover the following specification points:
Homeostasis is the maintenance of a state of dynamic equilibrium
The importance of maintaining pH, temperature and water potential in the body
The meaning of negative feedback and positive feedback control
The principles of hormone production by endocrine glands
The two main modes of action in hormones
The organisation of the mammalian nervous system into the CNS and PNS
The structure of the spinal cord
The location and functions of the main parts of the brain
The division of the autonomic nervous system into the sympathetic and parasympathetic systems
The transport of sodium and potassium ions in a resting potential
The formation of an action potential and the propagation along an axon
Saltatory conduction
The function of synapses
The formation and effects of excitatory and inhibitory postsynaptic potentials
The structure of the human retina
The role of rhodopsin
The distribution of rods and cone cells
The control of heart rate by the autonomic nervous system
The gross and microscopic structure of the kidney
The production of urea in the liver and its removal from the blood by ultrafiltration
Selective reabsorption in the proximal tubule
Water reabsorption in the loop of Henle
Control of mammalian plasma concentration
The differences between ectotherms and endotherms
The regulation of temperature by endotherms
If you would like to sample the quality of this lesson bundle, then download the homeostasis, mammalian nervous system, resting and action potentials and the formation of urea and ultrafiltration lessons as these have been uploaded for free.
This lesson bundle contains 10 lesson PowerPoints, which are highly detailed, and along with their accompanying resources have been designed to cover the content of modules 5.1.3 & 5.1.4 of the OCR A-level Biology A specification, titled neuronal communication and hormonal communication.
Each lesson contains a wide range of tasks, that include exam-style questions with mark schemes written into the PowerPoint that students can use to assess their understanding of the current topic as well as previously covered topics. There are also differentiated tasks, discussion points and quick quiz competitions to introduce key values and terms in a fun and memorable way.
This lesson bundle covers the following specification points in modules 5.1.3 & 5.1.4:
The roles of mammalian sensory receptors in converting different types of stimuli into nerve impulses
The structure and functions of sensory, motor and relay neurones
The generation and transmission of nerve impulses in mammals
The structure and roles of synapses in neurotransmission
Endocrine communication by hormones
The structure and functions of the adrenal glands
The histology of the pancreas
The regulation of blood glucose concentration
The differences between diabetes mellitus type I and II
The potential treatments for diabetes mellitus
If you would like to sample the quality of the lessons in this bundle, then download the nerve impulse and endocrine communication lessons as these have been uploaded for free.
This lesson bundle contains 5 detailed lesson PowerPoints and their accompanying resources which have been designed to cover the content of module 5.1.4 (Hormonal communication) of the OCR A-level Biology A specification. They contain a wide variety of tasks which include exam-style questions with displayed mark schemes that challenge the students on their current understanding as well as their ability to make links to previously covered topics.
The following specification points are covered in this bundle:
Endocrine communication by hormones
The structure and functions of the adrenal glands
The histology of the pancreas
The regulation of blood glucose concentration by the release of insulin and glucagon
The control of insulin secretion
The difference between type I and II diabetes mellitus
The potential treatments for diabetes mellitus
If you would like to sample the quality of the lessons in this bundle, then download the endocrine communication lesson as this has been uploaded for free
This lesson describes the principles of hormone production by endocrine glands and the two modes of action on target cells. The detailed PowerPoint and accompanying resources have been primarily designed to cover points 9.2 (i) & (ii) of the Edexcel A-level Biology B specification but can also be used as a revision tool to check on their knowledge of topics like biological molecules and transcription factors
Students should have a base knowledge of the endocrine system from GCSE so this lesson has been planned to build on that knowledge and to add the detail needed at this level. The lesson begins by challenging this knowledge to check that they understand that endocrine glands secrete these hormones directly into the blood. Students will learn that most of the secreted hormones are peptide (or protein) hormones and a series of exam-style questions are used to challenge them on their recall of the structure of insulin as well as to apply their knowledge to questions about glucagon. Moving forwards, the students are reminded that hormones have target cells that have specific receptor sites on their membrane. The relationship between a peptide hormone as a first messenger and a second messenger on the inside of the cell is described to allow students to understand how the activation of cyclic AMP triggers a cascade of events on the inside of the cell. The rest of the lesson focuses on steroid hormones and specifically their ability to pass through the membrane of a cell and to bind to transcription factors, as exemplified by oestrogen.
This lesson describes the secretion of peptide and steroid hormones by endocrine glands and their differing effects on target cells. The detailed PowerPoint and accompanying resources have been primarily designed to cover point 5.1.4 (a) of the OCR A-level Biology A specification but also makes clear links to upcoming lessons in this module as well as to topics such as transcription factors which are covered in module 6.1.1
Students should have a base knowledge of the endocrine system from GCSE so this lesson has been planned to build on that knowledge and to add the detail needed at this level. The lesson begins by challenging this knowledge to check that they understand that endocrine glands secrete these hormones directly into the blood. Students will learn that most of the secreted hormones are peptide (or protein) hormones and a series of exam-style questions are used to challenge them on their recall of the structure of insulin as well as to apply their knowledge to questions about glucagon. Moving forwards, the students are reminded that hormones have target cells that have specific receptor sites on their membrane. The relationship between a peptide hormone as a first messenger and a second messenger on the inside of the cell is covered in detail in an upcoming lesson but students are briefly introduced to G proteins and cyclic AMP so they are prepared. The rest of the lesson focuses on steroid hormones and specifically their ability to pass through the membrane of a cell and to bind to transcription factors, as exemplified by oestrogen.
This concise lesson acts as an introduction to topic 5.3, Energy and Ecosystems, and describes how plant biomass is formed, measured and estimated. The engaging PowerPoint is the 1st in a series of 3 lessons which have been designed to cover the detailed content of topic 5.3 of the AQA A-level Biology specification.
A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller:
community
ecosystem
abiotic factor
photosynthesis
respiratory substrate
biomass
calorimetry
The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Due to the clear link to photosynthesis, a series of prior knowledge checks are used to challenge the students on their knowledge of this cellular reaction but as this is the first lesson in the topic, the final section of the lesson looks forwards and introduces the chemical energy store in the plant biomass as NPP and students will also meet GPP and R so they are partially prepared for the next lesson.
Topic 12 tends to be the 1st topic to be taught in the second year of the CIE A-level Biology course and these 9 lessons are filled with a wide variety of differentiated tasks that will immediately engage and motivate the students whilst ensuring that the detailed content is covered. It is critical that students understand how energy in the form of ATP is produced by aerobic and anaerobic respiration and are able to describe the energy-driven reactions like active transport that need this input. For this reason, the lessons contain multiple understanding checks which assess the students on their current knowledge as well as checking on their ability to link to previously-covered topics.
The following specification points in topic 12 of the CIE A-level Biology specification are covered in these lessons:
The need for energy in living organisms
The features of ATP that make this molecule suitable as the energy currency
Substrate-level phosphorylation in glycolysis and the Krebs cycle
The role of the coenzymes in respiration
The involvement of the electron transport chain that’s found in the mitochondria and chloroplast membranes in the production of ATP
The four stages of aerobic respiration
Glycolysis
The link reaction
The Krebs cycle
Oxidative phosphorylation
The structure of the mitochondrion
The differences between aerobic and anaerobic respiration
The oxygen debt
If you would like to sample the quality of these lessons, then download the roles of the coenzymes and the Krebs cycle lessons as these have been uploaded for free
This lesson outlines the need for energy in living organisms, and describes how ATP is formed by phosphorylation in respiration and photosynthesis. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover points 12.1 (a, b, c & e) of the CIE A-level Biology specification but can be used as a revision of topics 1, 4 and 6 as the students knowledge of cell structure, membrane transport and ATP is constantly challenged.
As this is the first lesson in topic 12 (respiration), it has been specifically planned to act as an introduction to this cellular reaction and provides important details about glycolysis, the Krebs cycle and oxidative phosphorylation that will support the students to make significant progress when these stages are covered during individual lessons. Photophosphorylation is also introduced so students are prepared for the light-dependent reaction of photosynthesis in topic 13.
The main focus of the start of the lesson is the demonstration of the need for energy in a variety of reactions that occur in living organisms. Students met ATP in topics 1 and 6, so a spot the errors task is used to check on their recall of the structure and function of this molecule. This will act to remind them that the release of energy from the hydrolysis of ATP can be coupled to energy-driven reactions in the cell such as active transport and a series of exam-style questions are used to challenge them on their knowledge of this form of membrane transport. They will also see how energy is needed for protein synthesis and DNA replication and the maintenance of resting potential, before more questions challenge them to apply their knowledge of cell structure and transport to explain how it is needed during the events at a synapse.
The rest of the lesson focuses on the production of ATP by substrate-level, oxidative and photophosphorylation and the students will learn when ATP is formed by each of these reactions and will see how the electron transport chain in the membranes in the mitochondria and chloroplast is involved
This fully-resourced lesson uses real-life examples in plants and animals to explain why cellular respiration is so important. The PowerPoint and accompanying resources have been designed to cover point 5.2.2 (a) of the OCR A-level Biology A specification but can also be used as a revision tool to challenge the students on their knowledge of active transport, nervous transmission and muscle contraction.
As the first lesson in this module, it has been specifically planned to act as an introduction to this cellular reaction and provides important details about glycolysis, the Krebs cycle and oxidative phosphorylation that will support the students to make significant progress when these stages are covered during individual lessons. Students met phosphorylation in module 5.2.1 when considering the light-dependent reactions of photosynthesis and their knowledge of the production of ATP in this plant cell reaction is called on a lot in this lesson to show the similarities. The students are also tested on their recall of the structure and function of ATP, as covered in module 2.1.3, through a spot the errors task. By the end of the lesson, the students will be able to explain why the ATP produced in cellular respiration is needed by root hair cells, by companion cells and in the selective reabsorption of glucose in the proximal convoluted tubule. They will also be able to name and describe the different types of phosphorylation and will know that ATP is produced by substrate-level phosphorylation in glycolysis and the Krebs cycle and by oxidative phosphorylation in the final stage of aerobic respiration with the same name.
Normally the first topic to be taught in the second year of the AQA A-level Biology course, topic 5 contains some very important biological processes which include photosynthesis, respiration and energy transfer between organisms. All 17 lessons included in this bundle are highly detailed and have been planned at length to ensure that students remain motivated and engaged whilst being constantly challenged on their current understanding. Links to previously-covered topics are also made throughout the lessons.
The following specification points are covered in these lessons:
TOPIC 5.1
The light-dependent reaction of photosynthesis
The use of reduced NADP and ATP from the light-dependent reaction in the light-independent reaction
The light-independent reaction of photosynthesis
Environmental factors that limit the rate of photosynthesis
TOPIC 5.2
Respiration produces ATP
Glycolysis as the first stage of aerobic and anaerobic respiration
The conversion of pyruvate to lactate or ethanol in the anaerobic pathways
The link reaction and the Krebs cycle
Synthesis of ATP by oxidative phosphorylation
Other respiratory substrates
TOPIC 5.3
Gross primary production and net primary production
The net production of consumers
Farming practices designed to increase the efficiency of energy transfer
TOPIC 5.4
The role of microorganisms in the nitrogen cycle
The phosphorus cycle, including the role of saprobionts and mycorrrhizae
The use of artificial and natural fertilisers
The environmental issues arising from the use of fertilisers including leaching and eutrophication.
If you would like to sample the quality of the lessons in this bundle, then download the chloroplast structure, anaerobic respiration, oxidative phosphorylation, GPP and phosphorus cycle lessons as these have been uploaded for free
This lesson describes how respiration produces ATP by substrate-level and oxidative phosphorylation. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 7 lessons which have been designed to cover the detailed content of point 5.2 (RESPIRATION) of the AQA A-level Biology specification.
As the first lesson in this sub-topic, it has been specifically planned to act as an introduction to this cellular reaction and provides important details about glycolysis, the Krebs cycle and oxidative phosphorylation that will support the students to make significant progress when these stages are covered during individual lessons. Students met phosphorylation in topic 5.1 when considering the light-dependent reactions of photosynthesis and their knowledge of the production of ATP in this plant cell reaction is called on a lot in this lesson to show the similarities. The students are also tested on their recall of the structure and function of ATP, as covered in topic 1.6, through a spot the errors task. By the end of the lesson, the students will be able to name and describe the different types of phosphorylation and will know that ATP is produced by substrate-level phosphorylation in glycolysis and the Krebs cycle and by oxidative phosphorylation in the final stage of aerobic respiration with the same name.
This fully-resourced lesson explains the meaning of gross and net primary production and net production and describes how they are calculated. The PowerPoint and accompanying resources are part of the second lesson in a series of 3 lessons which have been designed to cover the detail in point 5.3 of the AQA A-level Biology specification.
Due to the fact that the productivity of plants is dependent on photosynthesis, a series of exam-style questions have been written into the lesson which challenge the students to explain how the structure of the leaf as well as the light-dependent and light-independent reactions are linked to GPP. All of the exam questions have displayed mark schemes which are included in the PowerPoint to allow students to immediately assess their understanding. A number of quick quiz competitions as well as guided discussion points are used to introduce the formulae to calculate NPP and N and to recognise the meaning of the components. Once again, this is immediately followed by the opportunity to apply their understanding to selected questions.
As well as linking to photosynthesis from earlier in topic 5, this lesson has been specifically planned to challenge students on their understanding of ecosystem terminology from the previous lesson as well as preparing them for the next lesson on the efficiency of energy transfer
This lesson describes and explains how production is affected by a range of farming practices designed to increase the efficiency of energy transfer. The PowerPoint and accompanying resources are part of the third lesson in a series of 3 which have been designed to cover the detail included in specification point 5.3 of the AQA A-level Biology specification.
Over the course of the lesson, a range of tasks which include exam-style questions with displayed mark schemes, guided discussion periods and quick quiz competitions will introduce and consider the following farming practices:
raising herbivores to reduce the number of trophic levels in a food chain
intensely rearing animals to reduce respiratory losses in human food chains
the use of fungicides, insecticides and herbicides
the addition of artificial fertilisers
The ethical issues raised by these practices are also considered and alternative methods discussed such as the addition of natural predators and the use of organic fertilisers like manure
As this is the last lesson in topic 5.3, it has been specifically planned to challenge the students on their knowledge of the previous two lessons and this includes a series of questions linking farming practice to the formula to calculate net production
This fully-resourced lesson describes the structure of the human retina and explains how the rhodopsin in rod cells allows vision in low light intensity. The detailed PowerPoint and accompanying resources have been designed to cover points 9.7 (i), (ii) & (iii) of the Edexcel A-level Biology B specification but also makes links to previously covered topics such as cell structure and nervous transmission.
It is likely that students will be aware that the human retina contains rod and cone cells, so this lesson builds on that knowledge and adds the detail needed at this level. Students will discover that the optical pigment in rod cells is rhodopsin and that the bleaching of this into retinal and opsin results in a cascade of events that allows an action potential to be initiated along the optic nerve. Time is taken to go through the events that occur in the dark and then the students are challenged to use this as a guide when explaining how the events differ in the light. Key terms like depolarisation and hyperpolarisation, that were met in topic 9.5, are used to explain the changes in membrane potential and the resulting effect on the connection with the bipolar and ganglion cells is then described.
Cone cells are also introduced, with the main focus being their distribution in the centre of the fovea which is used to explain colour vision in bright light.
This fully-resourced lesson describes how the functional differences of the retinal rod and cone cells is related to their structures. The detailed PowerPoint and accompanying resources are part of the 2nd in a series of 2 lessons that have been designed to cover the details included in point 6.1.2 of the AQA A-level Biology specification. However, as explained at the start of the lesson, it has been specifically planned to be taught after the lessons in topic 6.3, so that students are aware and understand the meaning of terms such as depolarisation and hyperpolarisation.
It is likely that students will be aware that the human retina contains rod and cone cells, so this lesson builds on that knowledge and adds the detail needed at this level. Over the course of the lesson, students will learn that these cells contain different optical pigments and that this feature along with their differing connectivity to the bipolar neurones means that they have different sensitivities to light, colour perception and visual acuity. Exam-style questions are interspersed throughout to check on current understanding and also make links to previously covered topics. For example, students are challenged to recognise a description of the mitochondria so they can discover that this cell structure is found in the inner segment where it is responsible for generating the ATP needed to pump sodium ions out of the cells.
As detailed above, this lesson ties in closely with topic 6.3 and students will be expected to make links to synapses and to the changes in membrane potential that occur when sodium ions move in or out of a cell
This lesson describes the detailed structure of a skeletal muscle fibre and the structural and physiological differences between fast and slow twitch fibres. The engaging PowerPoint and acccompanying resources have been designed to cover points 7.10 (i) & (ii) of the Edexcel International A-level Biology specification.
The start of the lesson uses an identification key to emphasise that skeletal muscle differs from cardiac and smooth muscle due to its voluntary nature. It is important that key terminology is recognised so once myology has been revealed as the study of muscles, key structural terms like myofibril, myofilament and myosin can be introduced. Moving forwards, students will be shown the striated appearance of this muscle so they can recognise that some areas appear dark where both myofilaments are found and others as light as they only contain actin or myosin. A quiz competition is used to introduce the A band, I band and H zone and students then have to use the information given to label a diagram of the myofibril.
This part of the lesson has been specifically planned to prepare the students for the upcoming lesson which describes the contraction of skeletal muscles by the sliding filament mechanism
The rest of the lesson focuses on the structural and physiological differences between fast and slow twitch fibres and the following characteristics are covered:
Reliance on the aerobic or anaerobic pathways to generate ATP
Resistance to fatigue
mitochondrial density
capillary density
myoglobin content (and colour)
fibre diameter
phosphocreatine content
glycogen content
A wide variety of tasks are used to cover this content and include knowledge recall and application of knowledge exam-style questions with fully-displayed mark schemes as well as quick quiz competitions to maintain motivation and engagement.
This fully-resourced lesson describes the roles of the hypothalamus and the pituitary gland in the control of mammalian plasma concentration. The engaging PowerPoint and accompanying resources have been designed to cover point 7.21 of the Edexcel International A-level Biology specification
The principles of homeostasis and negative feedback were covered in an earlier lesson in topic 7, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics.
The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work.
This lesson describes how solutes are selectively reabsorbed in the proximal tubule. The PowerPoint and accompanying resource have been designed to cover the first part of specification point 7.20 of the Edexcel International A-level Biology specification and builds on the knowledge gained in the previous lessons on the microscopic structure of the nephron and ultrafiltration.
The lesson begins by challenging the students to recall the substances that are found in the glomerular filtrate so that each of them can be considered over the course of the rest of the lesson. Moving forwards, the first of the numerous discussion points which are included in the lesson is used to get students to predict the component of the filtrate which won’t be found in the urine when they are presented with pie charts from each of these situations. Upon learning that glucose is 100% reabsorbed, along with most of the ions and some of the water, the rest of the lesson focuses on describing the relationship between the structure of the PCT and the function of selective reabsorption. Again, this section begins by encouraging the students to discuss and to predict which structures they would expect to find in a section of the kidney if the function is to reabsorb. They are given the chance to see the structure (as shown in the cover image) before each feature is broken down to explain its importance. Time is taken to look at the role of the cotransporter proteins to explain how this allows glucose, along with sodium ions, to be reabsorbed from the lumen of the PCT into the epithelial cells. The final part of the lesson focuses on urea and how the concentration of this substance increases along the tubule as a result of the reabsorption of some of the water.
This detailed lesson describes how urea is produced from excess amino acids and then removed from the bloodstream by ultrafiltration. The PowerPoint and accompanying resources have been designed to cover point 7.19 of the Edexcel International A-level Biology specification.
The first part of the lesson describes how deamination and the ornithine cycle forms urea. Although the students are not required to know the details of the cycle, it is important that they are aware of how the product of deamination, ammonia, is converted into urea (and why). Moving forwards, the rest of the lesson has been written to allow the students to discover ultrafiltration as a particular function of the nehron and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem